
Introduction to Computation
and Programming

Program Efficiency, Binary Search, and
Insertion Sort

EECE 230 - Introduction to Computation and Programming

Slides prepared for EECE 230C, Fall 2018-19, MSFEA, AUB

Updated with minor edits during the offering of EECE 230, Spring 2018-19, MSFEA, AUB

Material in these slides is based on [Guttag, Chapter 9],
[CLRS, Chapters 1 and 2], and wiki.python.org

Reading: [Guttag, Chapter 9], [CLRS, Chap 1, Sections 2.1, 3.1]

[CLRS] (AUB E-book link) : “Introduction to Algorithms”, by T. H. Cormen, C. E.
Leiserson, R. L. Rivest, and C. Stein, MIT press, third edition, 2009, MIT press.

https://wiki.python.org/moin/TimeComplexity
http://vp9py7xf3h.search.serialssolutions.com/?V=1.0&N=50&tab=BOOKS&L=VP9PY7XF3H&S=AC_T_B&C=Introduction+to+algorithms

Outline

• Program efficiency, algorithmic complexity
• Asymptotic notations: Theta, Big O, little o
• Time of analysis of:
Linear search
Element distinctness
Programming Assignment 2 algorithms

• Binary Search
• Insertion Sort

• Time analysis of some list operations and methods

EECE 230 - Introduction to Computation and Programming

I

II

III

I.1 Getting started: linear search

• Let 𝑇(𝑛) = worst case running time of linearSearch on a size- 𝑛 list
• Worst case: Adversary chooses L and e
• Why worst case? It gives a guarantee

EECE 230 - Introduction to Computation and Programming

• Consider the linear search
function (from PSS 4, while
loops version):

• If e is in L, function returns
index of first occurrence
returned. Otherwise, it
returns -1

Problem Solving Session

I.1 Getting started: linear search (Continued)

EECE 230 - Introduction to Computation and Programming

c1
c2
c3
c4
c5
c6
c7
c8

• Denote the cost, i.e.,
time, of Line 𝑖 by c𝑖

• Worst case? if e not in L

• Thus (worst case) time:

I.1 Getting started: linear search (Continued)

𝑇 𝑛 = 𝑐1 + 𝑐2 +𝑐3 + 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + 𝑐4 +𝑐8
= 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + (𝑐1+𝑐2 +𝑐3 + 𝑐4 +𝑐8)

= a constant × 𝑛 + (a negligable term comapred to 𝑛)
EECE 230 - Introduction to Computation and Programming

c1
c2
c3
c4
c5
c6
c7
c8

• Denote the cost, i.e.,
time, of Line 𝑖 by c𝑖

• Worst case if e not in L

• Thus (worst case) time:

I.1 Getting started: linear search (Continued)

𝑇 𝑛 = 𝑐1 + 𝑐2 +𝑐3 + 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + 𝑐4 +𝑐8
= 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + (𝑐1+𝑐2 +𝑐3 + 𝑐4 +𝑐8)

= a constant × 𝑛 + (a negligable term comapred to 𝑛)
EECE 230 - Introduction to Computation and Programming

c1
c2
c3
c4
c5
c6
c7
c8

• Denote the cost, i.e.,
time, of Line 𝑖 by c𝑖

• Worst case if e not in L

• Thus (worst case) time:
When while
breaks at i=n

I.2 Asymptotic analysis

• We can’t measure the running exactly as it depends on
 Interpreter’s implementation
 Computer speed

• Solution: asymptotic analysis: look at growth of 𝑇(𝑛) as the input size
𝒏 → ∞

• How does 𝑇(𝑛) scale as input size 𝑛 doubles or gets multiplied by 10?

• Interested in the complexity of the algorithm and not its implementation
using a particular programming language or its speed on a specific machine

• Key:
 Ignore constants
 Ignore low order terms

EECE 230 - Introduction to Computation and Programming

I.2 Asymptotic analysis (Continued)

• Examples:

5 × 𝑛 + 17

6 × 𝑛2 +18 × 𝑛 + 5

• Theta notation:

• 5 × 𝑛 + 17

• 6 × 𝑛2 +18 × 𝑛 + 5

• 3 × log 𝑛 + 7

• 10

EECE 230 - Introduction to Computation and Programming

Low order terms

Constant

Constant

1.2 Asymptotic analysis (Continued)

• Examples:

5 × 𝑛 + 17

6 × 𝑛2 +18 × 𝑛 + 5

• Theta notation:

• 5 × 𝑛 + 17 = Θ 𝑛

• 6 × 𝑛2 +18 × 𝑛 + 5 = Θ 𝑛2

• 3 × log 𝑛 + 7 = Θ log 𝑛

• 10 = Θ 1

EECE 230 - Introduction to Computation and Programming

Low order terms

Constant

Constant

1.3 Theta notation: formal definition

• Definition: Let f 𝑛 and g 𝑛 be functions defined on the
nonnegative integers and taking real values.

Assume that for 𝑛 large enough, f 𝑛 ≥ 0 and g 𝑛 ≥ 0.

We say that f 𝑛 = Θ 𝑔 𝑛 if

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= a positive constant

assuming that the limit exists.

• Check above examples:

EECE 230 - Introduction to Computation and Programming

1.3 Theta notation: formal definition
(Continued)

EECE 230 - Introduction to Computation and Programming

• Check above examples:

lim
𝑛→∞

5×𝑛+17

𝑛
= 5 > 0 => 5 × 𝑛 + 17 = Θ 𝑛

lim
𝑛→∞

6× 𝑛2+18×𝑛+5

𝑛2
= 6 > 0 => 6 × 𝑛2 +18 × 𝑛 + 5 = Θ 𝑛2

lim
𝑛→∞

3×log 𝑛+7

log 𝑛
= 3 > 0 => 3 × log 𝑛 + 7 = Θ log𝑛

lim
𝑛→∞

10

1
= 10 > 0 => 10 = Θ 1

I.4 Theta notation: more formal definition

More generally (even if limit doesn’t
exist), we say that f 𝑛 = Θ 𝑔 𝑛 if

for large values of n, f 𝑛 can be
sandwiched between two positive
constant multiples of g(n), i.e., there
exist 𝑛0 > 0 and constants c1, 𝑐2 > 0
such that for all 𝑛 > 𝑛0,

0 ≤ 𝑐1 × 𝑔 𝑛 ≤ f 𝑛 ≤ 𝑐2 × 𝑔 𝑛

EECE 230 - Introduction to Computation and Programming

[Figure 3.1 in “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]

I.4 Theta notation: more formal definition

More generally (even if limit doesn’t
exist), we say that f 𝑛 = Θ 𝑔 𝑛 if

for large values of n, f 𝑛 can be
sandwiched between two positive
constant multiples of g(n), i.e., there
exist 𝑛0 > 0 and constants c1, 𝑐2 > 0
such that for all 𝑛 > 𝑛0,

0 ≤ 𝑐1 × 𝑔 𝑛 ≤ f 𝑛 ≤ 𝑐2 × 𝑔 𝑛

EECE 230 - Introduction to Computation and Programming

[Figure 3.1 in “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]

I.5 Working with Theta

Useful properties:

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) =

EECE 230 - Introduction to Computation and Programming

𝑓1 𝑛 + 𝑓2 𝑛 for some
𝑓1 𝑛 = Θ 𝑔1(𝑛) and 𝑓2 𝑛 = Θ 𝑔2(𝑛)

means

I.5 Working with Theta (Continued)

Useful properties:

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) =

EECE 230 - Introduction to Computation and Programming

I.5 Working with Theta (Continued)

Useful properties:

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 × 𝑔2(𝑛)

EECE 230 - Introduction to Computation and Programming

Examples:

• Θ 1 + Θ 𝑛 =

• Θ 𝑛 + Θ 𝑛 =

• Θ 1 × 𝑛 =

• Θ 𝑛 × 𝑛 =

I.5 Working with Theta (Continued)

Useful properties:

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 × 𝑔2(𝑛)

EECE 230 - Introduction to Computation and Programming

Examples:

• Θ 1 + Θ 𝑛 = Θ 𝑛

• Θ 𝑛 + Θ 𝑛 = Θ 𝑛

• Θ 1 × 𝑛 = Θ 𝑛

• Θ 𝑛 × 𝑛 = Θ 𝑛2

I.5 Working with Theta: linear Search running
time (Continued)

𝑇 𝑛 = Θ 𝑛 steps

EECE 230 - Introduction to Computation and Programming

• Instead of using
constants, use Θ
notation

• Worst case if e not in L

• Worst case running time
of linearSearch:

• Note that indexing operator L[i] takes Θ 1 time: recall for the lists
lectures that they are implemented using contiguous memory cells

• Best case running time:

I.5 Working with Theta: linear Search running
time (Continued)

𝑇 𝑛 = Θ 𝑛 steps

EECE 230 - Introduction to Computation and Programming

• Instead of using
constants, use Θ
notation

• Worst case if e not in L

• Worst case running time
of linearSearch:

• Note that indexing operator L[i] takes Θ 1 time: recall for the lists
lectures that they are implemented using contiguous memory cells

• Best case running time: Θ 1 steps (if L[0] == e)

I.5 Working with Theta: searching for two
elements

EECE 230 - Introduction to Computation and Programming

• Worst case time:

I.5 Working with Theta: searching for two
elements (Continued)

EECE 230 - Introduction to Computation and Programming

• Worst case time: Θ 𝑛 +Θ 𝑛 +Θ 1 = Θ 𝑛 steps

• Two sequential loops: Θ 𝑛 +Θ 𝑛 = Θ 𝑛

• Nesting loops costs more

Θ 𝑛
Θ 𝑛

Passing parameters to function and return

I.6 Time analysis of element distinctness
function

• From the lists lectures
(function version): start with
naive version

• Worst case ?

EECE 230 - Introduction to Computation and Programming

I.6 Time analysis of element distinctness
function (Continued)

• From the lists lectures
(function version): start with
naive version

• Worst case if all distinct

• Inner loop takes Θ 𝑛 steps

EECE 230 - Introduction to Computation and Programming

Θ 𝑛

• Thus total worst case time of naiveDistinctElements is

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps

Control of outer for, passing
parameters to function, final return

I.6 Time analysis of element distinctness
function (Continued)

• From the lists lectures
(function version): start with
naive version

• Worst case if all distinct

• Inner loop takes Θ 𝑛 steps

EECE 230 - Introduction to Computation and Programming

Θ 𝑛

• Thus total worst case time of naiveDistinctElements is

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps

• Nested loops

• Best case running time:

I.6 Time analysis of element distinctness
function (Continued)

• From the lists lectures
(function version): start with
naive version

• Worst case if all distinct

• Inner loop takes Θ 𝑛 steps

EECE 230 - Introduction to Computation and Programming

Θ 𝑛

• Thus total worst case time of naiveDistinctElements is

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps

• Nested loops

• Best case running time: Θ 1 (if L[0]==L[1])

I.6 Time analysis of element distinctness
function (Continued)

• Now consider less naive
function:

• Worst case?

EECE 230 - Introduction to Computation and Programming

I.6 Time analysis of element distinctness
function (Continued)

• Now consider less naive
function:

• Worst case if distinct, in which
case inner loop takes Θ 𝑛 − 𝑖
steps

EECE 230 - Introduction to Computation and Programming

Θ 𝑛 − 𝑖

I.6 Time analysis of element distinctness
function (Continued)

• Now consider less naive
function:

• Worst case if distinct, in which
case inner loop takes Θ 𝑛 − 𝑖
steps

EECE 230 - Introduction to Computation and Programming

Θ 𝑛 − 𝑖

• Therefore, worst case running time of distinctElements is 𝚯 𝐧𝟐 :

T n = Θ 𝑛 + σ𝑖=0
𝑛−1Θ 𝑛 − 𝑖 = Θ(σ𝑖=0

𝑛−1 𝑛 − 𝑖) = Θ n2

(since σ𝑖=0
𝑛−1 𝑛 − 𝑖 = 𝑛 + 𝑛 − 1 +⋯+ 1 =

𝑛 𝑛+1

2
)

• That is, the speedup trick (𝑗 ≥ 𝑖 + 1) only changed T(n) by a constant

I.7 Other asymptotic notations (Continued)

Theta: f n = Θ g n f(n) is asymptotically like
g(n)

Big O: f n = O g n f(n) is asymptotically like
g(n) or weaker than g(n)

There exist c > 0 and 𝑛0 >
0 such that for all 𝑛 > 𝑛0,

0 ≤ 𝑓 𝑛 ≤ 𝑐 × 𝑔(𝑛)

Little o: f n = o g n f(n) is asymptotically
weaker than g(n) lim

𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

EECE 230 - Introduction to Computation and Programming

• Note: f n = O g n and g n = O f n f n = Θ g n
• Notational difference compared to [Guttag]:

• f = O g in [Guttag] means f = Θ g here
• f ∈ O g in [Gutta] means f = O g here

I.7 Other asymptotic notations (Continued)

Theta: f n = Θ g n f(n) is asymptotically like
g(n)

Big O: f n = O g n f(n) is asymptotically like
g(n) or weaker than g(n)

There exist c > 0 and 𝑛0 >
0 such that for all 𝑛 > 𝑛0,

0 ≤ 𝑓 𝑛 ≤ 𝑐 × 𝑔(𝑛)

Little o: f n = o g n f(n) is asymptotically
weaker than g(n) lim

𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

EECE 230 - Introduction to Computation and Programming

• Note: f n = O g n and g n = O f n f n = Θ g n
• Notational difference compared to [Guttag]:

• f = O g in [Guttag] means f = Θ g here
• f ∈ O g in [Gutta] means f = O g here

I.7 Other asymptotic notations: examples
(Continued)

EECE 230 - Introduction to Computation and Programming

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = Θ 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = o n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ O 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o(𝑛)

I.7 Other asymptotic notations: examples
(Continued)

EECE 230 - Introduction to Computation and Programming

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = Θ 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = o n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ O 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o(𝑛)

I.7 Other asymptotic notations (Continued)

EECE 230 - Introduction to Computation and Programming

• Say that you have an algorithm with worst case running time T(n)

• What does T(n) = Θ g n mean? The worst case running time grows
like g(n), i.e., g(n) is an asymptotic worst case guarantee which is
attainable.

• What does T(n) = O g n mean? The worst case running time grows
like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case
guarantee which may or may not be attainable.

• What does T(n) = o g n mean? The algorithm is asymptotically
much faster than g(n)

I.7 Other asymptotic notations (Continued)

EECE 230 - Introduction to Computation and Programming

• Say that you have an algorithm with worst case running time T(n)

• What does T(n) = Θ g n mean? The worst case running time grows
like g(n), i.e., g(n) is an asymptotic worst case guarantee which is
attainable.

• What does T(n) = O g n mean? The worst case running time grows
like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case
guarantee which may or may not be attainable.

• What does T(n) = o g n mean? The algorithm is asymptotically
much faster than g(n)

I.8 Common growth rates

• Θ(1) is called constant running time

• Θ(log n) is called logarithmic running time

• Θ(n) is called linear running time

• Θ(n log n) is called log-linear running time

• Θ n2 is called quadratic running time

• Θ(nk),where 𝑘 > 0 is a constant, is called polynomial running time

• Θ(𝑐𝑛), where c > 1 is a constant, is called exponential running time

EECE 230 - Introduction to Computation and Programming

I.9 Comparison of common growth rates

EECE 230 - Introduction to Computation and Programming

[Guttag, 2016, Chapter 9]

I.9 Comparison of common growth rates
(Continued)

EECE 230 - Introduction to Computation and Programming

[Guttag, 2016, Chapter 9]

I.9 Comparison of common growth rates
(Continued)

EECE 230 - Introduction to Computation and Programming

[Guttag, 2016, Chapter 9]

I.10 Examples from Programing Assignments
(PA) 1 and 2 (Continued)
• [PA1.Problem 4] Quadratic equations solver: Θ 1 time

• [PA2.Problem 1.a] Time to find the factorial of a given number n:
Θ n artithmetic operations (for large n, multiplications and
additions cost more than Θ 1 time)

• [PA2.Problem 2] Time to find the max in a sequence of 𝑛 number
entered by user: Θ n time
Space (memory): Θ 1

• [PA2.Problem 3.a] Time to check if a given number n is prime:
Θ √n time
(best known poly-log: Θ log 𝑛 𝑐 ,where c > 0 is a constant)

EECE 230 - Introduction to Computation and Programming

I.10 Examples from Programing Assignments
(PA) 1 and 2 (Continued)
• [PA1.Problem 4] Quadratic equations solver: Θ 1 time

• [PA2.Problem 1.a] Time to find the factorial of a given number n: Θ n
arithmetic operations (for large n, multiplications and additions cost more
than Θ 1 time)

• [PA2.Problem 2] Time to find the max in a sequence of 𝑛 number entered
by user: Θ n time

Space (memory): Θ 1

• [PA2.Problem 3.a] Time to check if a given number n is prime: Θ √n
arithmetic operations
(best known poly-log: Θ log 𝑛 𝑐 ,where c > 0 is a constant)

EECE 230 - Introduction to Computation and Programming

I.10 Examples from Programing Assignment
(PA) 2 (Continued)
• [PA2.Problem 4.a] Time to

check if a given number n is
square: Θ √n time

• [PA2.Problem 4.b] Time to
check if a given number n is
square using bisection
method (function version):

• Θ log𝑛 arithmetic
operation

• Why?

EECE 230 - Introduction to Computation and Programming

I.10 Examples from Programing Assignment
(PA) 2 (Continued)
• [PA2.Problem 4.a] Time to

check if a given number n is
square: Θ √n arithmetic
operations

• [PA2.Problem 4.b] Time to
check if a given number n is
square using bisection
method (function version):
• Θ log𝑛 arithmetic

operations

• Why?

EECE 230 - Introduction to Computation and Programming

I.11 Time analysis of square-root test using
bisection
• Initial search interval consists of the integers in [1, n]
• After each iteration of the while loop, the length of the search interval is

reduced by at least half
• Thus after k iterations, its length is at most 𝐧/𝟐𝐤

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 iterations, its length is at most 1
• Moreover, it is reduced by at least one integer at each iteration (as either
𝐥𝐨𝐰 is set to 𝐦𝐢𝐝 + 𝟏 or 𝐡𝐢𝐠𝐡 to 𝐦𝐢𝐝 − 𝟏 ,if 𝐦𝐢𝐝 ×𝐦𝐢𝐝 ≠ 𝐧)

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 + 𝟏 iterations, its must be empty
• Thus, the worst case time: 𝐎(𝐥𝐨𝐠𝟐 𝐧 + 𝟏) = 𝐎 𝐥𝐨𝐠 𝐧 arithmetic

operation (Big O in Section I.7 above)
• It is actually 𝚯 𝐥𝐨𝐠𝐧 : worst case when n is not square

EECE 230 - Introduction to Computation and Programming

II

•Binary Search

• Insertion Sort

EECE 230 - Introduction to Computation and Programming

II.1 Binary Search: the problem of
searching sorted lists

•When we have many search queries, it is more efficient to
first sort the list and implement the search queries using a
searching algorithm smarter than linear search, which
takes linear time

• Given a list L[0…n-1] of integers sorted in non-decreasing
order and a number x, check if x is in L: if found return an
index i such that L[i]= x, otherwise return -1

EECE 230 - Introduction to Computation and Programming

II.1 Idea of Binary Search

• Same as the bisection method

• Compare x with the middle element of L

• If >, we can ignore the lower half of L since L is sorted

• If <, we can ignore the upper half of L since L is sorted

• If =, we are done (x is an element of L)

• Repeat

EECE 230 - Introduction to Computation and Programming

II.1 Try it on a example

Try it on:

a. L = [-3,-2,1,1,2,3, 5, 6, 8, 9,17] and x = 5

b. Same L with and x = 4

EECE 230 - Introduction to Computation and Programming

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.a Binary search for 5 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.a Binary search for 5 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

II.1.a Binary search for 5 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Return the index 6 of 5

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.a Binary search for 5 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Return the index 6 of 5

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.a Binary search for 5 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Return the index 6 of 5

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

[]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

EECE 230C - Introduction to Computation and Programming

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

[]

II.1.b Binary search for 4 in [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Empty search interval: return -1

II.1 Elaborate on idea

• We need 3 variables: low, mid, and high
• Initially: low = 0 and high = n-1
• Compute: mid = (n-1)//2

(floor of (n-1)/2, i.e., largest integer less than or equal to (n-1)/2)
• If x==A[mid], done: return mid
• If L[mid]<x, update low = mid +1 and keep high the same
• If L[mid]>x, update high = mid -1 and keep low the same
• Re-compute: mid = (low+high)//2
• Repeat this process until either x is found or low > high, in which

case return -1

EECE 230 - Introduction to Computation and Programming

II.1 Binary Search function

EECE 230 - Introduction to Computation and Programming

II.1 Binary Search time analysis: same as
square-root bisection
• Initially, list size is n
• After each iteration of the while loop, the length of the sub-list

L[start … end] is reduced by at least half
• Thus after k iterations, its length is at most 𝐧/𝟐𝐤

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 iterations, its length is at most 1
• Moreover, length is reduced by at least one at each iteration (as either
𝐥𝐨𝐰 is set to 𝐦𝐢𝐝 + 𝟏 or 𝐡𝐢𝐠𝐡 to 𝐦𝐢𝐝 − 𝟏, if 𝐋[𝒎𝒊𝒅] ≠ 𝒙)

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 + 𝟏 iterations, its must be empty
• This shows that the worst case time = 𝐎(𝐥𝐨𝐠𝟐 𝐧 + 𝟏) = 𝐎 𝐥𝐨𝐠𝐧
• It is actually 𝚯 𝐥𝐨𝐠𝐧 : worst case when 𝑥 is not in the list
• Best case time = 𝚯 𝟏 : if x== 𝐋[𝒎𝒊𝒅] in the first iteration

EECE 230 - Introduction to Computation and Programming

II.2 Insertion Sort: the Porting Problem

• Input: list of n numbers L = [L[0], L[1],∙ ∙ ∙, L[n-1]]

• Objective: permute the elements of L so that they are sorted in non-
decreasing order, i.e., L[0] ≤ L[1] ≤ ∙ ∙ ∙ ≤L[n-1]

• Example:
• Input: L=[8, 2, 4, 9, 3, 2, 6]

• Sorted: L=[2, 2, 3, 4, 6, 8, 9]

• In PA 4, you implemented the Selection Sort algorithm, which takes
Θ 𝑛2 time

• Now: Insertion Sort, which also takes Θ 𝑛2 time

EECE 230 - Introduction to Computation and Programming

II.2 Idea of Insertion Sort

• Idea: sorting a hand of cards

• First card: ok

• Compare second card with the
first and insert in its correct place

• Compare the third card with the
first and second card and insert it
in its correct place

• And so on until you reach the last
card

EECE 230 - Introduction to Computation and Programming

Figure 2.1 in [CLRS, page 17]

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Try it on an example (Continued)

L = [5, 2, 4, 6, 1, 3]

L = [2, 5, 4, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [2, 4, 5, 6, 1, 3]

L = [1, 2, 4, 5, 6, 3]

L = [1, 2, 3, 4, 5, 6]

EECE 230 - Introduction to Computation and Programming

Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell: values compared to the key

• Shaded arrows: values moved the right

• Black arrow: where the key is inserted

II.2 Insertion Sort function (Continued)

EECE 230 - Introduction to Computation and Programming

II.2 Insertion Sort function (Continued)

EECE 230 - Introduction to Computation and Programming

• Function modifies input list L: it has no return value

II.2 Insertion Sort function (Continued)

EECE 230 - Introduction to Computation and Programming

• Function modifies input list L: it has no return value

II.2 Time Analysis Insertion Sort

• We have two nested loops each running for at most 𝑛 steps

• Thus the worst case time is O n2 steps

• By more carful analysis,we will show below that it is Θ 𝑛2

• Analysis similar to element distinctness algorithm

EECE 230 - Introduction to Computation and Programming

II.2 Time Analysis Insertion Sort
(Continued)

• Worst case when array in reverse
order: inner while loop will always go
back 𝑖 = 0 and stop at 𝑖 = −1

• Thus at the j′th iteration of the
outer loop, the inner loop takes
Θ j steps. Therefore, the j′th
iteration of the outer loop takes
Θ j steps

• Hence total worst case running time:

Θ 𝑛 + σ𝑗=1
𝑛−1Θ(𝑗) = Θ σ𝑗=1

𝑛−1 𝑗 = Θ 𝑛2

EECE 230 - Introduction to Computation and Programming

Θ j steps

Θ j

Θ 1

Θ 1

II.2 Selection Sort versus Insertion Sort
(Continued)

EECE 230 - Introduction to Computation and Programming

Selection Sort Insertion Sort

Worst case
running time

Best case running
time

II.2 Selection Sort versus Insertion Sort
(Continued)

EECE 230 - Introduction to Computation and Programming

Selection Sort Insertion Sort

Worst case
running time

Θ 𝑛2 Θ 𝑛2

Best case running
time

Θ 𝑛2 Θ 𝑛

Number of write
operations on list

II.2 Selection Sort versus Insertion Sort
(Continued)

EECE 230 - Introduction to Computation and Programming

Selection Sort Insertion Sort

Worst case
running time

Θ 𝑛2 Θ 𝑛2

Best case running
time

Θ 𝑛2 Θ 𝑛

Number of write
operations on list

Θ 𝑛 Θ 𝑛2

Worst case

III. Time analysis of some list operations and
methods

EECE 230 - Introduction to Computation and Programming

III.1 Time analysis of basic list operations and
methods

Equality check: L1==L2

Concatenation: L = L1+L2

Membership test: e in L

Slicing: L[i:j+1]

L.count(e)

L.index(e)

L.reverse(e)

EECE 230 - Introduction to Computation and Programming

Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of
size Θ(1) or objects of type float, bool, or None)

III.1 Time analysis of basic list operations and
methods (Continued)

Equality check: L1==L2 Θ(min(len(L1), len(L2)) PA 3.Problem 2.b

Concatenation: L = L1+L2 Θ(len(L1)+len(L2))

Membership test: e in L Θ(len(L1)) if e is a scalar PSS 3.Prolem 1.b

Slicing: L[i:j+1] Θ(j-i)

L.count(e) Θ(len(L)) PSS 4.Problem 1.a

L.index(e) Θ(len(L)) PSS 4.Problem 1.b

L.reverse(e) Θ(len(L)) PSS 4.Problem 1.c

EECE 230 - Introduction to Computation and Programming

Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of
size Θ(1) or objects of type float, bool, or None)

III.1 Time analysis of basic list operations and
methods (Continued)

Equality check: L1==L2 Θ(min(len(L1), len(L2)) PA 3.Problem 3.b

Concatenation: L = L1+L2 Θ(len(L1)+len(L2))

Membership test: e in L Θ(len(L1)) if e is a scalar PSS 3.Prolem 1.b

Slicing: L[i:j+1] Θ(j-i)

L.count(e) Θ(len(L)) PSS 4.Problem 1.a

L.index(e) Θ(len(L)) PSS 4.Problem 1.b

L.reverse(e) Θ(len(L)) PSS 4.Problem 1.c

EECE 230 - Introduction to Computation and Programming

sa
m

e
co

m
p

le
xi

ti
es

fo

r
st

ri
n

gs

Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of
size Θ(1) or objects of type float, bool, or None)

III.2 List.append method

• Recall from [Functions III.3] that in the worst case, a single
L.append(e) operations takes Θ(len(L)) time: if not enough
contiguous cells are available, the whole list is copied to new place in
memory and resized

• But the overhead on a long sequence of append operation is not
substantial

• Why? The implementation of append in Python is something like the
this: when append makes the list size a power of 2, the list is doubled,
i.e., it is copied to new place in memory and resized to twice its size

EECE 230 - Introduction to Computation and Programming

III.3 List.append method: amortized analysis

• Consider the following sequence of append operations:

• Let 𝑘 be the largest power of 2 less than 𝑛, i.e., 2𝑘 < 𝑛

• Then for i = 1,2,22, 23, … , 2k , the cost of append is Θ 2𝑖 = Θ i

• For all other values of i,the cost is Θ 1

• Thus total cost : Θ n + Θ σ𝑡=0
𝑘 2𝑡 = 𝚯 𝒏

since σ𝑡=0
𝑘 2𝑡 = 2k+1 − 1 < 2n − 1

EECE 230 - Introduction to Computation and Programming

reduce or pay off (a debt) with regular payments [Oxford Dictionaries]

III.3 List.append method: amortized analysis
(Continued)
• Compare with L=L+[e]:

• For each i , the cost of L=L+[e] is Θ i (a new list is created)

• Thus total cost : Θ σ𝑖=0
𝑛−1 𝑖 = Θ 𝑛2

EECE 230 - Introduction to Computation and Programming

III.4 List.sort method

• List.sort takes Θ 𝑛 log 𝑛 time to sort a size-n list

• Much faster than Selection Sort and Insertion Sort, which take
Θ 𝑛2 time each

• Next topic is recursion

• Among other things, we will see how recursion can be used to sort in
Θ 𝑛 log 𝑛 time

EECE 230 - Introduction to Computation and Programming

