### Introduction to Computation and Programming

#### Program Efficiency, Binary Search, and Insertion Sort

Reading: [Guttag, Chapter 9], [CLRS, Chap 1, Sections 2.1, 3.1]

**[CLRS]** (<u>AUB E-book link</u>) : "Introduction to Algorithms", by T. H. **C**ormen, C. E. Leiserson, R. L. **R**ivest, and C. **S**tein, MIT press, third edition, 2009, MIT press.

Slides prepared for EECE 230C, Fall 2018-19, MSFEA, AUB

Updated with minor edits during the offering of EECE 230, Spring 2018-19, MSFEA, AUB

Material in these slides is based on [Guttag, Chapter 9], [CLRS, Chapters 1 and 2], and <u>wiki.python.org</u>

#### Outline

- Program efficiency, algorithmic complexity
- Asymptotic notations: Theta, Big O, little o
- Time of analysis of:
  - ➤Linear search
  - Element distinctness
  - Programming Assignment 2 algorithms
- Binary Search

Insertion Sort

• Time analysis of some list operations and methods

### I.1 Getting started: linear search

| <ul> <li>Consider the linear search function (from PSS 4, while loops version): Problem Solving Session</li> <li>If e is in L, function returns index of first occurrence returned. Otherwise, it returns -1</li> </ul> | 1 def<br>2<br>3<br>4<br>5<br>6<br>7 | <pre>linearSearch(L,e): n = len(L) i = 0 while i&lt; n:     if L[i]==e:         return i     i=i+1</pre> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                         | 8                                   | return -1                                                                                                |

- Let T(n) = worst case running time of **linearSearch** on a size- n list
- Worst case: Adversary chooses L and e
- Why worst case? It gives a guarantee

#### I.1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line *i* by c<sub>i</sub>
- Worst case?

```
1 def linearSearch(L,e):
C<sub>1</sub>
C<sub>2</sub> 2
C<sub>3</sub> 3
                 n = len(L)
                  i = 0
       4
5
                  while i< n:
C<sub>4</sub>
                          if L[i]==e:
C<sub>5</sub>
       6
                                  return i
C<sub>6</sub>
                         i=i+1
C<sub>7</sub>
C<sub>8</sub>
                  return -1
       8
```

### I.1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line *i* by c<sub>i</sub>
- Worst case if e not in L
- Thus (worst case) time:

```
1 def linearSearch(L,e):
C_1
      2
3
                n = len(L)
C<sub>2</sub>
                i = 0
C<sub>3</sub>
      4
5
                while i< n:
C<sub>4</sub>
                        if L[i]==e:
C<sub>5</sub>
      6
                               return i
C<sub>6</sub>
C<sub>7</sub> 7
                       i=i+1
C<sub>8</sub>
       8
                return -1
```

#### I.1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line *i* by  $c_i$
- Worst case if e not in L
- Thus (worst case) time:

```
1def linearSearch(L,e):
                                  C_1
                                                 n = len(L)
                                  C<sub>2</sub>
                                         3
                                                  i = 0
                                  C<sub>3</sub>
                                        4
5
6
                                                 while i< n:
                                  C<sub>4</sub>
                                                         if L[i]==e:
                                  C<sub>5</sub>
                                  C<sub>6</sub>
                                                               return i
                                  C_7
                                                        i=i+1
                                                                     When while
                                  C<sub>8</sub>
                                                  return -1 /
                                                                     breaks at i=n
T(n) = c_1 + c_2 + c_3 + (c_4 + c_5 + c_7) \times n + c_4 + c_8
```

=  $(c_4 + c_5 + c_7) \times n + (c_1 + c_2 + c_3 + c_4 + c_8)$ 

= (a constant)  $\times n$  + (a negligable term comapred to n)

#### I.2 Asymptotic analysis

- We can't measure the running exactly as it depends on
  - Interpreter's implementation
  - Computer speed
- Solution: asymptotic analysis: look at growth of T(n) as the input size  $n \to \infty$
- How does T(n) scale as input size n doubles or gets multiplied by 10?
- Interested in the **complexity of the algorithm** and not its implementation using a particular programming language or its speed on a specific machine
- Key:
  - Ignore constants
  - Ignore low order terms

#### I.2 Asymptotic analysis (Continued)



- Theta notation:
  - $5 \times n + 17$
  - $6 \times n^2 + 18 \times n + 5$
  - $3 \times \log(n) + 7$
  - 10

### 1.2 Asymptotic analysis (Continued)



- Theta notation:
  - $5 \times n + 17 = \Theta(n)$
  - $6 \times n^2 + 18 \times n + 5 = \Theta(n^2)$
  - $3 \times \log n + 7 = \Theta(\log n)$
  - $10 = \Theta(1)$

### 1.3 Theta notation: formal definition

• Definition: Let f(n) and g(n) be functions defined on the nonnegative integers and taking real values.

Assume that for *n* large enough,  $f(n) \ge 0$  and  $g(n) \ge 0$ .

We say that  $f(n) = \Theta(g(n))$  if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a \text{ positive constant}$$

assuming that the limit exists.

# 1.3 Theta notation: formal definition (Continued)

• Check above examples:

$$\lim_{n \to \infty} \frac{5 \times n + 17}{n} = 5 > 0 \qquad => \qquad 5 \times n + 17 = \Theta(n)$$
$$\lim_{n \to \infty} \frac{6 \times n^2 + 18 \times n + 5}{n^2} = 6 > 0 \qquad => \qquad 6 \times n^2 + 18 \times n + 5 = \Theta(n^2)$$
$$\lim_{n \to \infty} \frac{3 \times \log n + 7}{\log n} = 3 > 0 \qquad => \qquad 3 \times \log n + 7 = \Theta(\log n)$$
$$\lim_{n \to \infty} \frac{10}{1} = 10 > 0 \qquad => \qquad 10 = \Theta(1)$$

#### I.4 Theta notation: more formal definition

More generally (even if limit doesn't exist), we say that  $f(n) = \Theta(g(n))$  if for large values of n, f(n) can be sandwiched between two positive constant multiples of g(n), i.e.,



[Figure 3.1 in "Introduction to Algorithms", Cormen, Leriseron, Rivest, and Stein, 2009]

#### I.4 Theta notation: more formal definition

More generally (even if limit doesn't exist), we say that  $f(n) = \Theta(g(n))$  if for large values of n, f(n) can be sandwiched between two positive constant multiples of g(n), i.e., there exist  $n_0 > 0$  and constants  $c_1, c_2 > 0$  such that for all  $n > n_0$ ,

$$0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n)$$



[Figure 3.1 in "Introduction to Algorithms", Cormen, Leriseron, Rivest, and Stein, 2009]

#### I.5 Working with Theta

Useful properties:

• 
$$f(n)=\Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

• 
$$\Theta(g_1(n)) + \Theta(g_2(n)) =$$
 means

 $f_1(n) + f_2(n)$  for some  $f_1(n) = \Theta(g_1(n))$  and  $f_2(n) = \Theta(g_2(n))$ 

### I.5 Working with Theta (Continued)

Useful properties:

- $f(n)=\Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$
- $\Theta(g_1(n)) + \Theta(g_2(n)) = \Theta(g_1(n) + g_2(n))$
- $\Theta(g_1(n)) \times \Theta(g_2(n)) =$

### I.5 Working with Theta (Continued)

Useful properties:

•  $f(n)=\Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$ 

• 
$$\Theta(g_1(n)) + \Theta(g_2(n)) = \Theta(g_1(n) + g_2(n))$$

•  $\Theta(g_1(n)) \times \Theta(g_2(n)) = \Theta(g_1(n) \times g_2(n))$ 

Examples:

- $\Theta(1) + \Theta(n) =$
- $\Theta(n) + \Theta(n) =$
- $\Theta(1) \times n =$
- $\Theta(n) \times n =$

### I.5 Working with Theta (Continued)

Useful properties:

• 
$$f(n)=\Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

• 
$$\Theta(g_1(n)) + \Theta(g_2(n)) = \Theta(g_1(n) + g_2(n))$$

• 
$$\Theta(g_1(n)) \times \Theta(g_2(n)) = \Theta(g_1(n) \times g_2(n))$$

Examples:

- $\Theta(1) + \Theta(n) = \Theta(n)$
- $\Theta(n) + \Theta(n) = \Theta(n)$
- $\Theta(1) \times n = \Theta(n)$

• 
$$\Theta(n) \times n = \Theta(n^2)$$

# I.5 Working with Theta: linear Search running time (Continued)

- Instead of using constants, use Θ notation
- Worst case if e not in L
- Worst case running time of **linearSearch**:

 $T(n) = \Theta(n)$  steps

- Note that indexing operator L[i] takes  $\Theta(1)$  time: recall for the lists lectures that they are implemented using contiguous memory cells
- Best case running time:

# I.5 Working with Theta: linear Search running time (Continued)

- Instead of using constants, use Θ notation
- Worst case if e not in L
- Worst case running time of **linearSearch**:

 $T(n) = \Theta(n)$  steps

- Note that indexing operator L[i] takes  $\Theta(1)$  time: recall for the lists lectures that they are implemented using contiguous memory cells
- Best case running time:  $\Theta(1)$  steps (if L[0] == e)

I.5 Working with Theta: searching for two elements

def linearSearchForTwoElements(L,e1,e2):
 i1 = linearSearch(L,e1)
 i2 = linearSearch(L,e2)
 return (i1,i2)

• Worst case time:

I.5 Working with Theta: searching for two elements (Continued)

0(n) 0(n) 0(n) i1 = linearSearch(L,e1) i2 = linearSearch(L,e2) return (i1,i2)

Passing parameters to function and return

- Worst case time:  $\Theta(n) + \Theta(n) + \Theta(1) = \Theta(n)$  steps
- Two sequential loops:  $\Theta(n) + \Theta(n) = \Theta(n)$
- Nesting loops costs more

### I.6 Time analysis of element distinctness function

- From the lists lectures (function version): start with naive version
- Worst case ?

```
def naiveDistinctElements(L):
    n = len(L)
    for i in range(n):
        for j in range(n):
            if i!=j and L[i]==L[j]:
                return False
    return True
```

- From the lists lectures (function version): start with naive version
- Worst case if all distinct
- Inner loop takes  $\Theta(n)$  steps
- Thus total worst case time of naiveDistinctElements is

$$\Theta(n) + n \times \Theta(n) = \Theta(n^2)$$
 steps

Control of outer for, passing parameters to function, final return

return True

- From the lists lectures (function version): start with naive version
- Worst case if all distinct
- Inner loop takes  $\Theta(n)$  steps

return True

• Thus total worst case time of naiveDistinctElements is

$$\Theta(n) + n \times \Theta(n) = \Theta(n^2)$$
 steps

- Nested loops
- Best case running time:

- From the lists lectures (function version): start with naive version
- Worst case if all distinct
- Inner loop takes  $\Theta(n)$  steps

return True

• Thus total worst case time of naiveDistinctElements is

$$\Theta(n) + n \times \Theta(n) = \Theta(n^2)$$
 steps

- Nested loops
- Best case running time:  $\Theta(1)$  (if L[0]==L[1])

- Now consider less naive function:
- Worst case?

```
def distinctElements(L):
    n = len(L)
    for i in range(n):
        for j in range(i+1,n):
            if L[i]==L[j]:
                return False
    return True
```

- Now consider less naive function:
- Worst case if distinct, in which case inner loop takes Θ(n − i) steps

- Now consider less naive function:
- Worst case if distinct, in which case inner loop takes  $\Theta(n-i)$  steps

return True

• Therefore, worst case running time of distinctElements is  $\Theta(\mathbf{n}^2)$ :  $T(\mathbf{n}) = \Theta(n) + \sum_{i=0}^{n-1} \Theta(n-i) = \Theta(\sum_{i=0}^{n-1} (n-i)) = \Theta(\mathbf{n}^2)$ 

(since 
$$\sum_{i=0}^{n-1} (n-i) = n + (n-1) + \dots + 1 = \frac{n(n+1)}{2}$$
)

• That is, the speedup trick  $(j \ge i + 1)$  only changed T(n) by a constant

### I.7 Other asymptotic notations

| Theta: $f(n) = \Theta(g(n))$      | f(n) is asymptotically like<br>g(n)                     |  |
|-----------------------------------|---------------------------------------------------------|--|
| Big 0: $f(n) = O(g(n))$           | f(n) is asymptotically like<br>g(n) or weaker than g(n) |  |
| <i>Little</i> o: $f(n) = o(g(n))$ | f(n) is asymptotically weaker than g(n)                 |  |

### I.7 Other asymptotic notations (Continued)

| Theta: $f(n) = \Theta(g(n))$      | f(n) is asymptotically like<br>g(n)                     |                                                                                                      |
|-----------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <i>Big</i> 0: $f(n) = O(g(n))$    | f(n) is asymptotically like<br>g(n) or weaker than g(n) | There exist $c > 0$ and $n_0 >$<br>0 such that for all $n > n_0$ ,<br>$0 \le f(n) \le c \times g(n)$ |
| <i>Little</i> o: $f(n) = o(g(n))$ | f(n) is asymptotically weaker than g(n)                 | $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$                                                          |

- Note: f(n) = O(g(n)) and  $g(n) = O(f(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- Notational difference compared to [Guttag]:
  - f = O(g) in [Guttag] means  $f = \Theta(g)$  here
  - $f \in O(g)$  in [Gutta] means f = O(g) here

#### I.7 Other asymptotic notations: examples

•  $5 \times n^2 + 1000 \times n + 17 \quad \Theta(n^2)$  $0(n^2)$ •  $5 \times n^2 + 1000 \times n + 17$ •  $5 \times n^2 + 1000 \times n + 17 \neq o(n^2)$ •  $5 \times n^2 + 1000 \times n + 17 \neq \Theta(n^3)$ •  $5 \times n^2 + 1000 \times n + 17$  $0(n^3)$  $\overline{o(n^3)}$ •  $5 \times n^2 + 1000 \times n + 17$ •  $5 \times n^2 + 1000 \times n + 17$  $\Theta(n)$ •  $5 \times n^2 + 1000 \times n + 17$ O(n)•  $5 \times n^2 + 1000 \times n + 17$ o(n)

### I.7 Other asymptotic notations: examples (Continued)

- $5 \times n^2 + 1000 \times n + 17 = \Theta(n^2)$ •  $5 \times n^2 + 1000 \times n + 17 = 0(n^2)$ •  $5 \times n^2 + 1000 \times n + 17 \neq o(n^2)$ •  $5 \times n^2 + 1000 \times n + 17 \neq \Theta(n^3)$ •  $5 \times n^2 + 1000 \times n + 17 = 0(n^3)$ •  $5 \times n^2 + 1000 \times n + 17 = o(n^3)$ •  $5 \times n^2 + 1000 \times n + 17 \neq \Theta(n)$ •  $5 \times n^2 + 1000 \times n + 17 \neq 0(n)$ 
  - $5 \times n^2 + 1000 \times n + 17 \neq o(n)$

### I.7 Other asymptotic notations (Continued)

- Say that you have an algorithm with worst case running time T(n)
- What does  $T(n) = \Theta(g(n))$  mean?

• What does T(n) = O(g(n)) mean?

• What does T(n) = o(g(n)) mean?

### I.7 Other asymptotic notations (Continued)

- Say that you have an algorithm with worst case running time T(n)
- What does T(n) = Θ(g(n)) mean? The worst case running time grows like g(n), i.e., g(n) is an asymptotic worst case guarantee which is attainable.
- What does T(n) = O(g(n)) mean? The worst case running time grows like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case guarantee which may or may not be attainable.
- What does T(n) = o(g(n)) mean? The algorithm is asymptotically much faster than g(n)

#### I.8 Common growth rates

- $\Theta(1)$  is called **constant** running time
- $\Theta(\log n$  ) is called  $\mbox{logarithmic}$  running time
- $\Theta(n)$  is called **linear** running time
- $\Theta(n \log n)$  is called **log-linear** running time
- $\Theta(n^2)$  is called **quadratic** running time
- $\Theta(n^k)$ , where k > 0 is a constant, is called **polynomial** running time
- $\Theta(c^n)$ , where c > 1 is a constant, is called **exponential** running time

#### I.9 Comparison of common growth rates



**Figure 9.7 Constant, logarithmic, and linear growth** [Guttag, 2016, Chapter 9]

## I.9 Comparison of common growth rates (Continued)



Figure 9.8 Linear, log-linear, and quadratic growth

[Guttag, 2016, Chapter 9]

## I.9 Comparison of common growth rates (Continued)



**Figure 9.9 Quadratic and exponential growth** [Guttag, 2016, Chapter 9]

EECE 230 - Introduction to Computation and Programming

## I.10 Examples from Programing Assignments (PA) 1 and 2

- [PA1.Problem 4] Quadratic equations solver:
- [PA2.Problem 1.a] Time to find the factorial of a given number n:

• [PA2.Problem 2] Time to find the max in a sequence of *n* number entered by user:

➤Space (memory):

• [PA2.Problem 3.a] Time to check if a given number n is prime:

## I.10 Examples from Programing Assignments (PA) 1 and 2 (Continued)

- [PA1.Problem 4] Quadratic equations solver:  $\Theta(1)$  time
- [PA2.Problem 1.a] Time to find the factorial of a given number n:  $\Theta(n)$ **arithmetic operations** (for large n, multiplications and additions cost more than  $\Theta(1)$  time)
- [PA2.Problem 2] Time to find the max in a sequence of n number entered by user: Θ(n) time

>Space (memory):  $\Theta(1)$ 

• [PA2.Problem 3.a] Time to check if a given number n is prime:  $\Theta(\sqrt{n})$ arithmetic operations (best known poly-log:  $\Theta((\log n)^c)$ , where c > 0 is a constant) I.10 Examples from Programing Assignment (PA) 2 (Continued)

- [PA2.Problem 4.a] Time to check if a given number n is square:
- [PA2.Problem 4.b] Time to check if a given number n is square using bisection method (function version):

```
23 def isSquareBisection(n):
       if n<0: return False
24
25
       elif n ==0:return True
26
       else:
27
           low = 1
28
           high = n
29
           while low<=high:
30
                mid = (low+high)//2
                if mid*mid ==n:
31
32
                    return True
                elif mid*mid<n:</pre>
33
                    low = mid+1
34
35
                else:
36
                    high
                           = mid-1
           return False
37
```

I.10 Examples from Programing Assignment (PA) 2 (Continued)

- [PA2.Problem 4.a] Time to check if a given number n is square:  $\Theta(\sqrt{n})$  arithmetic operations
- [PA2.Problem 4.b] Time to check if a given number n is square using bisection method (function version):
  - $\Theta(\log n)$  arithmetic operations
- Why?

```
23 def isSquareBisection(n):
       if n<0: return False
24
25
       elif n ==0:return True
26
       else:
27
           low = 1
28
           high = n
29
           while low<=high:
30
               mid = (low+high)//2
                if mid*mid ==n:
31
32
                    return True
                elif mid*mid<n:</pre>
33
                    low = mid+1
34
35
               else:
36
                    high
                           = mid-1
           return False
37
```

## I.11 Time analysis of square-root test using bisection

- Initial search interval consists of the integers in [1, n]
- After each iteration of the while loop, the length of the search interval is reduced by at least half
- Thus after k iterations,  $% \left( {{{\bf{k}}_{\rm{s}}}} \right)$  its length is at most  $\left. {n/{2^k}} \right.$
- Hence after at most  $log_2 n$  iterations, its length is at most  $\mathbf{1}$
- Moreover, it is reduced by at least one integer at each iteration (as either low is set to mid + 1 or high to mid 1 ,if  $mid \times mid \neq n$  )
- Hence after at most  $log_2 n + 1$  iterations, its must be empty
- Thus, the worst case time:  $O(\,log_2\,n\,+1)=O(\,log\,n\,)$  arithmetic operation (Big O in Section I.7 above)
- It is actually  $\Theta$  (log n) : worst case when n is not square

- Binary Search
- Insertion Sort

II.1 Binary Search: the problem of searching sorted lists

- When we have many search queries, it is more efficient to first sort the list and implement the search queries using a searching algorithm smarter than linear search, which takes linear time
- Given a list L[0...n-1] of integers sorted in non-decreasing order and a number x, check if x is in L: if found return an index i such that L[i] = x, otherwise return -1

## II.1 Idea of Binary Search

- Same as the bisection method
- Compare x with the middle element of L
- If >, we can ignore the lower half of L since L is sorted
- If <, we can ignore the upper half of L since L is sorted
- If =, we are done (x is an element of L)
- Repeat

## II.1 Try it on a example

Try it on:

- a. L = [-3,-2,1,1,2,3, 5, 6, 8, 9,17] and x = 5
- b. Same L with and x = 4

## $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ [-3,-2,1,1,2,3, 5, 6, 8, 9,17] \end{bmatrix}$

## $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ [-3,-2,1,1,2,3, 5, 6, 8, 9,17] \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ [-3, -2, 1, 1, 2, 3, 5, 5, 6, 8, 9, 17] \\ & 6 & 7 & 8 & 9 & 10 \\ [5, 6, 8, 9, 17] \end{bmatrix}$$





#### Return the index 6 of 5

## $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline [-3,-2,1,1,2,3, 5, 6, 8, 9,17] \end{bmatrix}$

#### 0 1 2 3 4 5 6 7 8 9 10 [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10 [-3,-2,1,1,2,3, 5, 6, 8, 9,17] 6 7 8 9 10 [5, 6, 8, 9,17]







Empty search interval: return -1

## II.1 Elaborate on idea

- We need 3 variables: low, mid, and high
- Initially: **low = 0** and **high = n-1**
- Compute: **mid = (n-1)//2** (<u>floor</u> of **(n-1)/2**, i.e., *largest integer less than or equal to* **(n-1)/2**)
- If x==A[mid], done: return mid
- If L[mid]<x, update low = mid +1 and keep high the same
- If L[mid]>x, update high = mid -1 and keep low the same
- Re-compute: mid = (low+high)//2
- Repeat this process until either x is found or low > high, in which case return -1

## II.1 Binary Search function

95 def binarySearch(L, x): n = len(L)96 97 low = 0 98 high = n-1while low<=high:</pre> 99 mid = (low+high)//2100 if L[mid] == x: 101 return mid 102 elif L[mid]<x:</pre> 103 low = mid+1104 105 else: high = mid-1106 107 return -1

## II.1 Binary Search time analysis: same as square-root bisection

- Initially, list size is **n**
- After each iteration of the while loop, the length of the sub-list L[start ... end] is reduced by at least half
- $\bullet$  Thus after k iterations,  $% \left( {{{\mathbf{k}}_{k}}} \right)$  its length is at most  $\left. {n/{{2^k}}} \right.$
- Hence after at most  $log_2 n$  iterations, its length is at most  $\mathbf{1}$
- Moreover, length is reduced by at least one at each iteration (as either low is set to mid + 1 or high to mid 1, if  $L[mid] \neq x$ )
- Hence after at most  $log_2 n + 1$  iterations, its must be empty
- This shows that the worst case time =  $O(\log_2 n + 1) = O(\log n)$
- It is actually  $\Theta$  (log n) : worst case when x is not in the list
- Best case time =  $\Theta(1)$ : if **x==** L[*mid*] in the first iteration

## II.2 Insertion Sort: the Porting Problem

- *Input:* list of n numbers  $L = [L[0], L[1], \dots, L[n-1]]$
- Objective: permute the elements of L so that they are sorted in nondecreasing order, i.e., L[0] ≤ L[1] ≤ · · · ≤L[n-1]
- Example:
  - *Input:* L=[8, 2, 4, 9, 3, 2, 6]
  - *Sorted:* L=[2, 2, 3, 4, 6, 8, 9]
- In PA 4, you implemented the Selection Sort algorithm, which takes  $\Theta\left(n^2
  ight)$  time
- Now: Insertion Sort, which also takes  $\Theta(n^2)$  time

## II.2 Idea of Insertion Sort

- Idea: sorting a hand of cards
- First card: ok
- Compare second card with the first and insert in its correct place
- Compare the third card with the first and second card and insert it in its correct place
- And so on until you reach the last card





Figure 2.1 in [CLRS, page 17]

### II.2 Try it on an example

L = [5, 2, 4, 6, 1, 3]

L = [5, 2, 4, 6, 1, 3]

- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted



- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted



- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

L = [5, 2, 4, 6, 1, 3] L = [2, 5, 4, 6, 1, 3] L = [2, 4, 5, 6, 1, 3]L = [2, 4, 5, 6, 1, 3]



- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

L = [5, 2, 4, 6, 1, 3] L = [2, 5, 4, 6, 1, 3] L = [2, 4, 5, 6, 1, 3] L = [2, 4, 5, 6, 1, 3]L = [1, 2, 4, 5, 6, 3]



- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

L = [5, 2, 4, 6, 1, 3] L = [2, 5, 4, 6, 1, 3] L = [2, 4, 5, 6, 1, 3] L = [2, 4, 5, 6, 1, 3] L = [1, 2, 4, 5, 6, 3] L = [1, 2, 3, 4, 5, 6]

(a) 
$$\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 5 & 2 & 4 & 6 & 1 & 3 \\ \hline & & & & & & \\ \end{array}$$
 (b)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 5 & 4 & 6 & 1 & 3 \\ \hline & & & & & & \\ \end{array}$  (c)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 4 & 5 & 6 & 1 & 3 \\ \hline & & & & & \\ \end{array}$  (d)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 4 & 5 & 6 & 1 & 3 \\ \hline & & & & & \\ \end{array}$  (e)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$  (f)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$  (f)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$  (f)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$  (f)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$  (f)  $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & & \\ \end{array}$ 

- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

## II.2 Insertion Sort function (Continued)

# 125 def insertionSort(L): 126 n = len(L) 127 for j in range(1,n): 128 # Insert L[j] into the sorted sequence L[0...j-1] 129 key = L[j] # Save L[j] in key to avoid Loosing it

## II.2 Insertion Sort function (Continued)



• Function modifies input list L: it has no return value

#### II.2 Insertion Sort function (Continued)

```
125 def insertionSort(L):
       n = len(L)
126
       for j in range(1,n):
127
           # Insert L[j] into the sorted sequence L[0\cdots j-1]
128
           key = L[j] # Save L[j] in key to avoid loosing it
129
           i = j - 1
130
           while i>=0 and L[i] > key:
131
                   L[i+1] = L[i] # move L[i] forward
132
                   i = i -1 # and go one step back
133
134
           L[i+1] = key
135
136 L = [1, 5, 17, 3 - 1, 0, 17.3, 105, 56.9]
137 insertionSort(L)
```

• Function modifies input list L: it has no return value

### II.2 Time Analysis Insertion Sort

- We have two nested loops each running for at most *n* steps
- Thus the worst case time is  $O(n^2)$  steps
- By more carful analysis, we will show below that it is  $\Theta(n^2)$
- Analysis similar to element distinctness algorithm

### II.2 Time Analysis Insertion Sort (Continued)

- Worst case when array in reverse order: inner while loop will always go def insertion back i = 0 and stop at i = -1 n = len(L)
- Thus at the j'th iteration of the outer loop, the inner loop takes
  ⊙ (j) steps. Therefore, the j'th iteration of the outer loop takes
  ⊙ (j) steps
- Hence total worst case running time:  $\Theta(n) + \sum_{j=1}^{n-1} \Theta(j) = \Theta(\sum_{j=1}^{n-1} j) = \Theta(n^2)$

```
def insertionSot(L):
  for j in range(1,n):
    key = L[j]
                   (-) (-1)
                           Θ(j)
      while i>=0 and L[i] > key:
        L[i+1] = L[i]
    L[i+1]
            = key
                        \Theta(1)
                \Theta (j) steps
```

#### II.2 Selection Sort versus Insertion Sort

|                            | Selection Sort | Insertion Sort |
|----------------------------|----------------|----------------|
| Worst case<br>running time |                |                |
| Best case running time     |                |                |

# II.2 Selection Sort versus Insertion Sort (Continued)

|                                       | Selection Sort | Insertion Sort |
|---------------------------------------|----------------|----------------|
| Worst case<br>running time            | $\Theta(n^2)$  | $\Theta(n^2)$  |
| Best case running time                | $\Theta(n^2)$  | $\Theta(n)$    |
| Number of write<br>operations on list |                |                |

# II.2 Selection Sort versus Insertion Sort (Continued)

|                                       | Selection Sort | Insertion Sort              |
|---------------------------------------|----------------|-----------------------------|
| Worst case<br>running time            | $\Theta(n^2)$  | $\Theta(n^2)$               |
| Best case running time                | $\Theta(n^2)$  | $\Theta(n)$                 |
| Number of write<br>operations on list | Θ(n)           | $\Theta(n^2)$<br>Worst case |

### III. Time analysis of some list operations and methods

### III.1 Time analysis of basic list operations and methods

Assume below that objects in lists are  $\Theta(1)$ -size scalars (i.e., integers of size  $\Theta(1)$  or objects of type float, bool, or None)

| Equality check: L1==L2   |  |
|--------------------------|--|
| Concatenation: L = L1+L2 |  |
| Membership test: e in L  |  |
| Slicing: L[i:j+1]        |  |
| L.count(e)               |  |
| L.index(e)               |  |
| L.reverse(e)             |  |

## III.1 Time analysis of basic list operations and methods (Continued)

Assume below that objects in lists are  $\Theta(1)$ -size scalars (i.e., integers of size  $\Theta(1)$  or objects of type float, bool, or None)

| Equality check: L1==L2   | Θ( min(len(L1), len(L2) )   | PA 3.Problem 2.b  |
|--------------------------|-----------------------------|-------------------|
| Concatenation: L = L1+L2 | Θ(len(L1)+len(L2))          |                   |
| Membership test: e in L  | Θ(len(L1)) if e is a scalar | PSS 3.Prolem 1.b  |
| Slicing: L[i:j+1]        | Θ(j-i)                      |                   |
| L.count(e)               | Θ(len(L))                   | PSS 4.Problem 1.a |
| L.index(e)               | Θ(len(L))                   | PSS 4.Problem 1.b |
| L.reverse(e)             | Θ(len(L))                   | PSS 4.Problem 1.c |

## III.1 Time analysis of basic list operations and methods (Continued)

Assume below that objects in lists are  $\Theta(1)$ -size scalars (i.e., integers of size  $\Theta(1)$  or objects of type float, bool, or None)

| 1 | Equality check: L1==L2   | Θ( min(len(L1), len(L2) )   | PA 3.Problem 3.b  |
|---|--------------------------|-----------------------------|-------------------|
|   | Concatenation: L = L1+L2 | Θ(len(L1)+len(L2))          |                   |
|   | Membership test: e in L  | Θ(len(L1)) if e is a scalar | PSS 3.Prolem 1.b  |
|   | Slicing: L[i:j+1]        | Θ(j-i)                      |                   |
|   | L.count(e)               | Θ(len(L))                   | PSS 4.Problem 1.a |
|   | L.index(e)               | Θ(len(L))                   | PSS 4.Problem 1.b |
|   | L.reverse(e)             | Θ(len(L))                   | PSS 4.Problem 1.c |

#### III.2 List.append method

- Recall from [Functions III.3] that in the worst case, a single L.append(e) operations takes Θ(len(L)) time: if not enough contiguous cells are available, the whole list is copied to new place in memory and resized
- But the overhead on a long sequence of append operation is not substantial
- Why? The implementation of append in Python is something like the this: when append makes the list size a power of 2, the list is doubled, i.e., it is copied to new place in memory and resized to twice its size

#### III.3 List.append method: amortized analysis

reduce or pay off (a debt) with regular payments [Oxford Dictionaries]

• Consider the following sequence of append operations:

```
L = []
for i in range(n):
    # get e from somewhere, e.g., user input
    L.append(e)
```

- Let k be the largest power of 2 less than n, i.e.,  $2^k < n$
- Then for  $i = 1, 2, 2^2, 2^3, ..., 2^k$ , the cost of append is  $\Theta(2i) = \Theta(i)$
- For all other values of i, the cost is  $\Theta(1)$
- Thus total cost :  $\Theta(n) + \Theta(\sum_{t=0}^{k} 2^t) = \Theta(n)$ since  $\sum_{t=0}^{k} 2^t = 2^{k+1} - 1 < 2n - 1$

### III.3 List.append method: amortized analysis (Continued)

- Compare with L=L+[e]:
   L = []
   for i in range(n):
   # get e from somewhere, e.g., user input
   L=L+[e]
- For each i , the cost of L=L+[e] is  $\Theta(i)$  (a new list is created)
- Thus total cost :  $\Theta(\sum_{i=0}^{n-1} i) = \Theta(n^2)$

#### III.4 List.sort method

- List.sort takes  $\Theta(n \log n)$  time to sort a size-n list
- Much faster than Selection Sort and Insertion Sort, which take  $\Theta(n^2)$  time each
- Next topic is recursion
- Among other things, we will see how recursion can be used to sort in  $\Theta(n \log n)$  time