Introduction to Computation and Programming
 Program Efficiency, Binary Search, and Insertion Sort

Reading: [Guttag, Chapter 9], [CLRS, Chap 1, Sections 2.1, 3.1]
[CLRS] (AUB E-book link) : "Introduction to Algorithms", by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, MIT press, third edition, 2009, MIT press.

Slides prepared for EECE 230C, Fall 2018-19, MSFEA, AUB
Updated with minor edits during the offering of EECE 230, Spring 2018-19, MSFEA, AUB
Material in these slides is based on [Guttag, Chapter 9],
[CLRS, Chapters 1 and 2], and wiki.python.org

Outline

- Program efficiency, algorithmic complexity
- Asymptotic notations: Theta, Big O, little o
- Time of analysis of:
$>$ Linear search
>Element distinctness
>Programming Assignment 2 algorithms
II • Binary Search
- Insertion Sort

III

- Time analysis of some list operations and methods

I. 1 Getting started: linear search

- Consider the linear search function (from PSS 4, while loops version):

Problem Solving Session

- If e is in L, function returns index of first occurrence returned. Otherwise, it returns -1

```
1def linearSearch(L,e):
2 n = len(L)
    i = 0
    while i< n:
        if L[i]==e:
            return i
        i=i+1
    return -1
```

- Let $T(n)=$ worst case running time of linearSearch on a size- n list
- Worst case: Adversary chooses L and e
- Why worst case? It gives a guarantee

I. 1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line i by c_{i}
- Worst case?

C_{1}	1 def	linearSearch(L,e):
c_{2}	2	$\mathrm{n}=1 \mathrm{l}$ (L)
C_{3}	3	$\mathrm{i}=0$
C_{4}	4	while i< n :
C_{5}	5	if L[i]==e:
C_{6}	6	return i
c_{7}	7	i=i+1
C_{8}	8	return -1

I. 1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line i by c_{i}
- Worst case if e not in L
- Thus (worst case) time:

C_{1}	1 def	linearSearch $(L, e):$
C_{2}	2	$\mathrm{n}=\operatorname{len}(\mathrm{L})$
C_{3}	3	$\mathrm{i}=0$
C_{4}	4	while $\mathrm{i}<\mathrm{n}:$
C_{5}	5	if $\mathrm{L}[\mathrm{i}]==\mathrm{e}:$
c_{6}	6	return i
c_{7}	7	$\mathrm{i}=\mathrm{i}+1$
C_{8}	8	return -1

I. 1 Getting started: linear search (Continued)

- Denote the cost, i.e., time, of Line i by c_{i}
- Worst case if e not in L

c_{1}	1 def linearSearch $(L, e):$	
c_{2}	2	$n=\operatorname{len}(L)$
c_{3}	3	$i=0$
c_{4}	4	while $i<n:$
c_{5}	5	if $L[i]==e:$
c_{6}	6	return i
c_{7}	7	$i=i+1 \quad$ When while
c_{8}	8	return $-1 /$ breaks at $i=n$

$$
\begin{aligned}
T(n) & =c_{1}+c_{2}+c_{3}+\left(c_{4}+c_{5}+c_{7}\right) \times n+c_{4}+c_{8} \\
& =\left(c_{4}+c_{5}+c_{7}\right) \times n+\left(c_{1}+c_{2}+c_{3}+c_{4}+c_{8}\right) \\
& =(\text { a constant }) \times n+(\text { a negligable term comapred to } n)
\end{aligned}
$$

I. 2 Asymptotic analysis

- We can't measure the running exactly as it depends on
$>$ Interpreter's implementation
$>$ Computer speed
- Solution: asymptotic analysis: look at growth of $T(n)$ as the input size $\boldsymbol{n} \rightarrow \infty$
- How does $T(n)$ scale as input size n doubles or gets multiplied by 10 ?
- Interested in the complexity of the algorithm and not its implementation using a particular programming language or its speed on a specific machine
- Key:
$>$ Ignore constants
$>$ Ignore low order terms

I. 2 Asymptotic analysis (Continued)

- Examples:

Constant

$$
\begin{aligned}
& >5 \times n+17 \\
& >6 \times n^{2}+18 \times n+5 \\
& \quad \text { Constant }
\end{aligned}
$$

- Theta notation:
- $5 \times n+17$
- $6 \times n^{2}+18 \times n+5$
- $3 \times \log (n)+7$
- 10

1.2 Asymptotic analysis (Continued)

- Examples:

Constant

$$
\begin{aligned}
& >5 \times n+17 \\
& >6 \times n^{2}+18 \times n+5 \\
& \quad \text { Constant }
\end{aligned}
$$

- Theta notation:
- $5 \times n+17=\Theta(n)$
- $6 \times n^{2}+18 \times n+5=\Theta\left(n^{2}\right)$
- $3 \times \log n+7=\Theta(\log n)$
- $10=\Theta(1)$

1.3 Theta notation: formal definition

- Definition: Let $\mathrm{f}(n)$ and $\mathrm{g}(n)$ be functions defined on the nonnegative integers and taking real values.
Assume that for n large enough, $\mathrm{f}(n) \geq 0$ and $\mathrm{g}(n) \geq 0$.
We say that $\mathrm{f}(n)=\Theta(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\text { a positive constant }
$$

assuming that the limit exists.

1.3 Theta notation: formal definition (Continued)

- Check above examples:

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{5 \times n+17}{n}=5>0 & \Rightarrow \quad 5 \times n+17=\Theta(n) \\
\lim _{n \rightarrow \infty} \frac{6 \times n^{2}+18 \times n+5}{n^{2}}=6>0 & \Rightarrow \quad 6 \times n^{2}+18 \times n+5=\Theta\left(n^{2}\right) \\
\lim _{n \rightarrow \infty} \frac{3 \times \log n+7}{\log n}=3>0 & \Rightarrow 3 \times \log n+7=\Theta(\log n) \\
\lim _{n \rightarrow \infty} \frac{10}{1}=10>0 & \Rightarrow 10=\Theta(1)
\end{array}
$$

I. 4 Theta notation: more formal definition

More generally (even if limit doesn't exist), we say that $\mathrm{f}(n)=\Theta(g(n))$ if for large values of $\mathrm{n}, \mathrm{f}(n)$ can be sandwiched between two positive constant multiples of $g(n)$, i.e.,

[Figure 3.1 in "Introduction to Algorithms", Cormen, Leriseron, Rivest, and Stein, 2009]

I. 4 Theta notation: more formal definition

More generally (even if limit doesn't exist), we say that $\mathrm{f}(n)=\Theta(g(n))$ if for large values of $\mathrm{n}, \mathrm{f}(n)$ can be sandwiched between two positive constant multiples of $g(n)$, i.e., there exist $n_{0}>0$ and constants $\mathrm{c}_{1}, c_{2}>0$ such that for all $n>n_{0}$,

$$
0 \leq c_{1} \times g(n) \leq \mathrm{f}(n) \leq c_{2} \times g(n)
$$

[Figure 3.1 in "Introduction to Algorithms", Cormen, Leriseron, Rivest, and Stein, 2009]

I. 5 Working with Theta

Useful properties:

- $\mathrm{f}(\mathrm{n})=\Theta(g(n)) \Rightarrow g(n)=\Theta(f(n))$
- $\Theta\left(g_{1}(n)\right)+\Theta\left(g_{2}(n)\right)=$ means,

```
\(f_{1}(n)+f_{2}(n)\) for some
\(f_{1}(n)=\Theta\left(g_{1}(n)\right)\) and \(f_{2}(n)=\Theta\left(g_{2}(n)\right)\)
```


I. 5 Working with Theta (Continued)

Useful properties:

- $\mathrm{f}(\mathrm{n})=\Theta(g(n)) \Rightarrow g(n)=\Theta(f(n))$
- $\Theta\left(g_{1}(n)\right)+\Theta\left(g_{2}(n)\right)=\Theta\left(g_{1}(n)+g_{2}(n)\right)$
- $\Theta\left(g_{1}(n)\right) \times \Theta\left(g_{2}(n)\right)=$

I. 5 Working with Theta (Continued)

Useful properties:

- $\mathrm{f}(\mathrm{n})=\Theta(g(n)) \Rightarrow g(n)=\Theta(f(n))$
- $\Theta\left(g_{1}(n)\right)+\Theta\left(g_{2}(n)\right)=\Theta\left(g_{1}(n)+g_{2}(n)\right)$
- $\Theta\left(g_{1}(n)\right) \times \Theta\left(g_{2}(n)\right)=\Theta\left(g_{1}(n) \times g_{2}(n)\right)$

Examples:

- $\Theta(1)+\Theta(n)=$
- $\Theta(n)+\Theta(n)=$
- $\Theta(1) \times n=$
- $\Theta(n) \times n=$

$$
=
$$

.

I. 5 Working with Theta (Continued)

Useful properties:

- $\mathrm{f}(\mathrm{n})=\Theta(g(n)) \Rightarrow g(n)=\Theta(f(n))$
- $\Theta\left(g_{1}(n)\right)+\Theta\left(g_{2}(n)\right)=\Theta\left(g_{1}(n)+g_{2}(n)\right)$
- $\Theta\left(g_{1}(n)\right) \times \Theta\left(g_{2}(n)\right)=\Theta\left(g_{1}(n) \times g_{2}(n)\right)$

Examples:

- $\Theta(1)+\Theta(n)=\Theta(n)$
- $\Theta(n)+\Theta(n)=\Theta(n)$
- $\Theta(1) \times n=\Theta(n)$
- $\Theta(n) \times n=\Theta\left(n^{2}\right)$

I. 5 Working with Theta: linear Search running time (Continued)

- Instead of using constants, use Θ notation
- Worst case if e not in L
- Worst case running time of linearSearch:

1 def linearSearch $(L, e):$	
2	$n=\operatorname{len}(L)$
3	$i=0$
4	while $i<n:$
5	if $L[i]==e:$
6	return i
7	$i=i+1$
8	return -1

$$
T(n)=\Theta(n) \text { steps }
$$

- Note that indexing operator $L[i]$ takes $\Theta(1)$ time: recall for the lists lectures that they are implemented using contiguous memory cells
- Best case running time:

I. 5 Working with Theta: linear Search running time (Continued)

- Instead of using constants, use Θ notation
- Worst case if e not in L
- Worst case running time of linearSearch:

1 def	linearSearch $(L, e):$
2	$n=\operatorname{len}(L)$
3	$i=0$
4	while $i<n:$
5	if $L[i]==e:$
6	return i
7	$i=i+1$
8	return -1

$$
T(n)=\Theta(n) \text { steps }
$$

- Note that indexing operator $L[i]$ takes $\Theta(1)$ time: recall for the lists lectures that they are implemented using contiguous memory cells
- Best case running time: $\Theta(1)$ steps (if $\mathrm{L}[0]==e$)

I. 5 Working with Theta: searching for two elements

```
def linearSearchForTwoElements(L,e1,e2):
    i1 = linearSearch(L,e1)
    i2 = linearSearch(L,e2)
    return (i1,i2)
```

- Worst case time:

I. 5 Working with Theta: searching for two elements (Continued)

```
def linearSearchForTwoElements(L,e1,e2):
    i1 = linearSearch(L,e1)
    i2 = linearSearch(L,e2)
    return (i1,i2)
```

Passing parameters to function and return

- Worst case time: $\Theta(n)+\Theta(n)+\Theta(1)=\Theta(n)$ steps
- Two sequential loops: $\Theta(n)+\Theta(n)=\Theta(n)$
- Nesting loops costs more

I. 6 Time analysis of element distinctness function

- From the lists lectures (function version): start with naive version
- Worst case ?

```
def naiveDistinctElements(L):
n = len(L)
for i in range(n):
    for j in range(n):
    if i!=j and L[i]==L[j]:
                                    return False
return True
```


I. 6 Time analysis of element distinctness function (Continued)

- From the lists lectures (function version): start with naive version
- Worst case if all distinct

```
def naiveDistinctElements(L):
    n = len(L)
    for i in range(n):
\Theta(n) if i!=j and L[i]==L[j]:
return False
``` return True
- Inner loop takes \(\Theta(n)\) steps
- Thus total worst case time of naiveDistinctElements is
\[
\Theta(n)+\mathrm{n} \times \Theta(n)=\Theta\left(n^{2}\right) \text { steps }
\]

Control of outer for, passing parameters to function, final return

\section*{I. 6 Time analysis of element distinctness function (Continued)}
- From the lists lectures (function version): start with naive version
- Worst case if all distinct
```

def naiveDistinctElements(L):
n = len(L)
for i in range(n):
\Theta(n) if i!=j and L[i]==L[j]:
return False

```
return True
- Inner loop takes \(\Theta(n)\) steps
- Thus total worst case time of naiveDistinctElements is
\[
\Theta(n)+\mathrm{n} \times \Theta(n)=\Theta\left(n^{2}\right) \text { steps }
\]
- Nested loops
- Best case running time:

\section*{I. 6 Time analysis of element distinctness function (Continued)}
- From the lists lectures (function version): start with naive version
- Worst case if all distinct
```

def naiveDistinctElements(L):
n = len(L)
for i in range(n):
\Theta(n) if i!=j and L[i]==L[j]:
return False

```
return True
- Inner loop takes \(\Theta(n)\) steps
- Thus total worst case time of naiveDistinctElements is
\[
\Theta(n)+\mathrm{n} \times \Theta(n)=\Theta\left(n^{2}\right) \text { steps }
\]
- Nested loops
- Best case running time: \(\Theta(1)\) (if \(L[0]==L[1]\))

\section*{I. 6 Time analysis of element distinctness function (Continued)}
- Now consider less naive function:
- Worst case?
```

def distinctElements(L):
n = len(L)
for i in range(n):
for j in range(i+1,n):
if L[i]==L[j]:
return False
return True

```

\section*{I. 6 Time analysis of element distinctness function (Continued)}
- Now consider less naive
```

def distinctElements(L):
n = len(L)
for i in range(n):
@(n-i) $$
\begin{array}{c}{\mathrm{ for j in range(i+1,n):}}\\{\mathrm{ if L[i]==L[j]:}}\\{\mathrm{ return False}}\end{array}
$$)
return True

```

\section*{I. 6 Time analysis of element distinctness function (Continued)}
- Now consider less naive
def distinctElements(L): function:
- Worst case if distinct, in which case inner loop takes \(\Theta(n-i)\) steps
\[
\mathrm{n}=\operatorname{len}(\mathrm{L})
\]
for \(i\) in range(\(n\)):
\(\Theta(n-i) \quad\)\begin{tabular}{c}
for \(\begin{array}{c}j \text { in range }(i+1, n): \\
\text { if } L[i]=L[j]: \\
\text { return False }\end{array}\) \\
\hline
\end{tabular}
return True
- Therefore, worst case running time of distinctElements is \(\Theta\left(\mathbf{n}^{2}\right)\) :
\[
\mathrm{T}(\mathrm{n})=\Theta(n)+\sum_{i=0}^{n-1} \Theta(n-i)=\Theta\left(\sum_{i=0}^{n-1}(n-i)\right)=\Theta\left(\mathrm{n}^{2}\right)
\]
(since \(\sum_{i=0}^{n-1}(n-i)=n+(n-1)+\cdots+1=\frac{n(n+1)}{2}\))
- That is, the speedup trick \((j \geq i+1)\) only changed \(\mathrm{T}(\mathrm{n})\) by a constant

\section*{I. 7 Other asymptotic notations}
\begin{tabular}{|l|l|l|}
\hline Theta: \(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))\) & \begin{tabular}{l}
\(\mathrm{f}(\mathrm{n})\) is asymptotically like \\
\(\mathrm{g}(\mathrm{n})\)
\end{tabular} \\
\hline Big \(0: \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))\) & \begin{tabular}{l}
\(\mathrm{f}(\mathrm{n})\) is asymptotically like \\
\(\mathrm{g}(\mathrm{n})\) or weaker than \(\mathrm{g}(\mathrm{n})\)
\end{tabular} & \\
\hline Little \(0: \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))\) & \(\mathrm{f}(\mathrm{n})\) is asymptotically \\
weaker than \(\mathrm{g}(\mathrm{n})\)
\end{tabular}\(\quad\).

\section*{I. 7 Other asymptotic notations (Continued)}
\begin{tabular}{|l|l|c|}
\hline Theta: \(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))\) & \begin{tabular}{l}
\(\mathrm{f}(\mathrm{n})\) is asymptotically like \\
\(\mathrm{g}(\mathrm{n})\)
\end{tabular} & \\
\hline Big \(0: \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))\) & \begin{tabular}{l}
\(\mathrm{f}(\mathrm{n})\) is asymptotically like \\
\(\mathrm{g}(\mathrm{n})\) or weaker than \(\mathrm{g}(\mathrm{n})\)
\end{tabular} & \begin{tabular}{c}
There exist \(\mathrm{c}>0\) and \(n_{0}>\) \\
0 such that for all \(n>n_{0}\), \\
\(0 \leq f(n) \leq c \times g(n)\)
\end{tabular} \\
\hline Little \(0: \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))\) & \begin{tabular}{l}
\(\mathrm{f}(\mathrm{n})\) is asymptotically \\
weaker than \(\mathrm{g}(\mathrm{n})\)
\end{tabular} & \(\lim _{n \rightarrow \infty} \frac{f(n)}{\mathrm{g}(n)}=0\) \\
\hline
\end{tabular}
- Note: \(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))\) and \(\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})) \Leftrightarrow \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))\)
- Notational difference compared to [Guttag]:
- \(\mathrm{f}=\mathrm{O}(\mathrm{g})\) in [Guttag] means \(\mathrm{f}=\Theta(\mathrm{g})\) here
- \(\mathrm{f} \in \mathrm{O}(\mathrm{g})\) in [Gutta] means \(\mathrm{f}=\mathrm{O}(\mathrm{g})\) here

\section*{I. 7 Other asymptotic notations: examples}
- \(5 \times n^{2}+1000 \times n+17 \quad \Theta\left(n^{2}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \quad O\left(n^{2}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \neq 0\left(n^{2}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \neq \Theta\left(n^{3}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \quad 0\left(\mathrm{n}^{3}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \quad o\left(n^{3}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \quad \Theta(n)\)
- \(5 \times n^{2}+1000 \times n+17 \quad O(n)\)
\(-5 \times n^{2}+1000 \times n+17 \quad o(n)\)

\section*{I. 7 Other asymptotic notations: examples (Continued)}
\(-5 \times n^{2}+1000 \times n+17=\Theta\left(n^{2}\right)\)
\(-5 \times n^{2}+1000 \times n+17=0\left(n^{2}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \neq 0\left(n^{2}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \neq \Theta\left(n^{3}\right)\)
- \(5 \times n^{2}+1000 \times n+17=0\left(\mathrm{n}^{3}\right)\)
\(-5 \times n^{2}+1000 \times n+17=0\left(\mathrm{n}^{3}\right)\)
- \(5 \times n^{2}+1000 \times n+17 \neq \Theta(n)\)
- \(5 \times n^{2}+1000 \times n+17 \neq 0(n)\)
- \(5 \times n^{2}+1000 \times n+17 \neq \mathrm{o}(n)\)

\section*{I. 7 Other asymptotic notations (Continued)}
- Say that you have an algorithm with worst case running time \(T(n)\)
- What does \(T(n)=\Theta(g(n))\) mean?
- What does \(T(n)=O(g(n))\) mean?
- What does \(T(n)=o(g(n))\) mean?

\section*{I. 7 Other asymptotic notations (Continued)}
- Say that you have an algorithm with worst case running time \(T(n)\)
- What does \(T(n)=\Theta(g(n))\) mean? The worst case running time grows like \(\mathrm{g}(\mathrm{n})\), i.e., \(\mathrm{g}(\mathrm{n})\) is an asymptotic worst case guarantee which is attainable.
- What does \(T(n)=O(g(n))\) mean? The worst case running time grows like \(\mathrm{g}(\mathrm{n})\) or is weaker than \(\mathrm{g}(\mathrm{n})\), i.e., \(\mathrm{g}(\mathrm{n})\) is an asymptotic worst case guarantee which may or may not be attainable.
- What does \(T(n)=o(g(n))\) mean? The algorithm is asymptotically much faster than \(\mathrm{g}(\mathrm{n})\)

\section*{I. 8 Common growth rates}
- \(\Theta(1)\) is called constant running time
- \(\Theta(\log n)\) is called logarithmic running time
- \(\Theta(n)\) is called linear running time
- \(\Theta(n \log n)\) is called log-linear running time
- \(\Theta\left(n^{2}\right)\) is called quadratic running time
- \(\Theta\left(\mathrm{n}^{\mathrm{k}}\right)\), where \(k>0\) is a constant, is called polynomial running time
- \(\Theta\left(c^{n}\right)\), where \(c>1\) is a constant, is called exponential running time

\section*{I. 9 Comparison of common growth rates}

Figure 9.7 Constant, logarithmic, and linear growth [Guttag, 2016, Chapter 9]

\section*{I. 9 Comparison of common growth rates (Continued)}

Figure 9.8 Linear, log-linear, and quadratic growth [Guttag, 2016, Chapter 9]

\section*{I. 9 Comparison of common growth rates (Continued)}

Figure 9.9 Quadratic and exponential growth [Guttag, 2016, Chapter 9]

\section*{I. 10 Examples from Programing Assignments (PA) 1 and 2}
- [PA1.Problem 4] Quadratic equations solver:
- [PA2.Problem 1.a] Time to find the factorial of a given number n :
- [PA2.Problem 2] Time to find the max in a sequence of \(n\) number entered by user:
\(>\) Space (memory):
- [PA2.Problem 3.a] Time to check if a given number n is prime:

\section*{I.10 Examples from Programing Assignments (PA) 1 and 2 (Continued)}
- [PA1.Problem 4] Quadratic equations solver: ©(1) time
- [PA2.Problem 1.a] Time to find the factorial of a given number \(n: ~ \Theta(n)\) arithmetic operations (for large n , multiplications and additions cost more than \(\Theta\) (1) time)
- [PA2.Problem 2] Time to find the max in a sequence of \(n\) number entered by user: \(\Theta(\mathrm{n})\) time
\(>\) Space (memory): \(\Theta(1)\)
- [PA2.Problem 3.a] Time to check if a given number \(n\) is prime: \(\Theta(\sqrt{ } \mathrm{n})\) arithmetic operations (best known poly-log: \(\Theta\left((\log n)^{c}\right)\), where \(\mathrm{c}>0\) is a constant)

\section*{I. 10 Examples from Programing Assignment (PA) 2 (Continued)}
- [PA2.Problem 4.a] Time to check if a given number \(n\) is square:
- [PA2.Problem 4.b] Time to check if a given number \(n\) is square using bisection method (function version):

23 def isSquareBisection(n):
24 if \(n<0\) : return False
25 elif \(\mathrm{n}==0\) :return True
26 else:
27 low = 1
\(28 \quad\) high \(=\mathrm{n}\)
while low<=high:
 mid \(=(l o w+h i g h) / / 2\)
 if mid*mid \(==n\) :
 return True
 elif mid*mid<n:
 low = mid+1
 else:
 high \(=\) mid-1
 return False

\section*{I. 10 Examples from Programing Assignment (PA) 2 (Continued)}
- [PA2.Problem 4.a] Time to check if a given number n is square: \(\Theta(\sqrt{ } \mathrm{n})\) arithmetic operations
- [PA2.Problem 4.b] Time to check if a given number \(n\) is square using bisection method (function version):
- \(\Theta(\log n)\) arithmetic operations
- Why?

23 def isSquareBisection(n):
24 if \(n<0\) : return False
25 elif \(\mathrm{n}==0\) :return True
26 else:
low \(=1\)
\[
\text { high }=n
\]
while low<=high:
\[
\text { mid }=(\text { low+high }) / / 2
\]
\[
\text { if mid*mid }==\mathrm{n}:
\]
return True
elif mid*mid<n:
\[
\text { low }=\text { mid }+1
\]
else:
return False
\[
\text { high }=\text { mid-1 }
\]

\section*{I. 11 Time analysis of square-root test using bisection}
- Initial search interval consists of the integers in [1, n]
- After each iteration of the while loop, the length of the search interval is reduced by at least half
- Thus after \(\mathbf{k}\) iterations, its length is at most \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\)
- Hence after at most \(\log _{2} \mathbf{n}\) iterations, its length is at most \(\mathbf{1}\)
- Moreover, it is reduced by at least one integer at each iteration (as either low is set to mid +1 or high to mid -1 , if mid \(\times\) mid \(\neq \mathbf{n}\))
- Hence after at most \(\log _{2} \mathbf{n}+\mathbf{1}\) iterations, its must be empty
- Thus, the worst case time: \(\mathbf{0}\left(\log _{2} \mathbf{n}+\mathbf{1}\right)=\mathbf{O}(\boldsymbol{\operatorname { l o g }} \mathbf{n})\) arithmetic operation (Big O in Section I.7 above)
- It is actually © \((\log \mathbf{n})\) : worst case when \(n\) is not square
- Binary Search
- Insertion Sort

\section*{II. 1 Binary Search: the problem of searching sorted lists}
- When we have many search queries, it is more efficient to first sort the list and implement the search queries using a searching algorithm smarter than linear search, which takes linear time
- Given a list L[0...n-1] of integers sorted in non-decreasing order and a number \(\mathbf{x}\), check if \(\mathbf{x}\) is in L : if found return an index \(\mathbf{i}\) such that \(\mathrm{L}[\mathbf{i}]=\mathbf{x}\), otherwise return \(\mathbf{- 1}\)

\section*{II. 1 Idea of Binary Search}
- Same as the bisection method
- Compare \(x\) with the middle element of \(L\)
- If \(>\), we can ignore the lower half of \(L\) since \(L\) is sorted
- If \(<\), we can ignore the upper half of \(L\) since \(L\) is sorted
- If \(=\), we are done (\(x\) is an element of \(L\))
- Repeat

\section*{II. 1 Try it on a example}

\section*{Try it on:}
a. \(L=[-3,-2,1,1,2,3,5,6,8,9,17]\) and \(x=5\)
b. Same \(L\) with and \(x=4\)

\section*{II.1.a Binary search for 5 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\left[-3,-2,1,1,1,2,3_{3}^{1}, 5^{6},{ }^{7}, 8_{8}^{8}, 9,9,17\right]
\]

\section*{II.1.a Binary search for 5 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\left[-3,-2,1,1,1,2,3_{3}^{1}, 5^{6},{ }^{7}, 8_{8}^{8}, 9,9,17\right]
\]

\title{
II.1.a Binary search for 5 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)
}
\[
\begin{aligned}
& 678910 \\
& \text { [5, 6, 8, 9, 17] }
\end{aligned}
\]

\title{
II.1.a Binary search for 5 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)
}
\[
\begin{aligned}
& {[-3,-2,1,1,2,3,5,6,8,9,17]} \\
& \begin{array}{lllll}
6 & 7 & 8 & 9 & 10
\end{array} \\
& {[5,6,8,9,17]} \\
& 67 \\
& {[5,6]}
\end{aligned}
\]

\section*{II.1.a Binary search for 5 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{aligned}
& 678910 \\
& \text { [5, 6, 8, 9,17] } \\
& 67 \\
& {[5,6]}
\end{aligned}
\]

Return the index 6 of 5

\section*{II.1.b Binary search for 4 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 \\
{[-3,-2,1,1,2,3,} & 5, & 6,8, & 9,17]
\end{array}
\]

\section*{II.1.b Binary search for 4 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 \\
{[-3,-2,1,1,2,3,} & 5, & 6,8, & 9,17]
\end{array}
\]

\section*{II.1.b Binary search for 4 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{aligned}
& \begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& {[-3,-2,1,1,2,3,5,6,8,9,17]} \\
& 678910 \\
& \text { [5, 6, 8, 9,17] }
\end{aligned}
\]

\section*{II.1.b Binary search for 4 in \(\quad[-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& {[-3,-2,1,1,2,3,5,6,8,9,17]} \\
& \begin{array}{lllll}
6 & 7 & 8 & 9 & 10
\end{array} \\
& \text { [5, 6, 8, 9,17] } \\
& 67 \\
& {[5,6]}
\end{aligned}
\]

\section*{II.1.b Binary search for 4 in \(\quad[-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 \\
{[-3,-2,1,1,2,3,} & 5, & 6,8, & 9,17
\end{array}
\]
\[
\begin{array}{lllll}
6 & 7 & 8 & 9 & 10
\end{array}
\]
\[
[5,6,8,9,17]
\]
\[
6 \quad 7
\]
\[
[5,6]
\]
[]

\section*{II.1.b Binary search for 4 in \([-3,-2,1,1,2,3,5,6,8,9,17]\)}
\[
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& {[-3,-2,1,1,2,3,5,6,8,9,17]} \\
& 678910 \\
& \text { [5, 6, 8, 9,17] } \\
& 67 \\
& {[5,6]} \\
& \text { [] }
\end{aligned}
\]

Empty search interval: return -1

\section*{II. 1 Elaborate on idea}
- We need 3 variables: low, mid, and high
- Initially: low = 0 and high = n-1
- Compute: \(\mathbf{m i d}=(\mathbf{n}-1) / / 2\)
(floor of (\(\mathbf{n} \mathbf{- 1} \mathbf{1} / \mathbf{2}\), i.e., largest integer less than or equal to (\(\mathrm{n}-\mathbf{1}\))/2)
- If \(x==A[m i d]\), done: return mid
- If \(L[m i d]<x\), update low \(=\) mid +1 and keep high the same
- If [[mid]>x, update high = mid \(\mathbf{- 1}\) and keep low the same
- Re-compute: mid = (low+high)//2
- Repeat this process until either \(\mathbf{x}\) is found or low \(>\) high, in which case return -1

\section*{II. 1 Binary Search function}
```

    95def binarySearch(L, x):
    96 n = len(L)
97 low = 0
98 high = n-1
99 while low<=high:
100 mid = (low+high)//2
101 if L[mid] == x:
102 return mid
103 elif L[mid]<x:
104
105
106
107 return -1
low = mid+1
else:
high = mid-1

```

\section*{II. 1 Binary Search time analysis: same as square-root bisection}
- Initially, list size is n
- After each iteration of the while loop, the length of the sub-list L [start ... end] is reduced by at least half
- Thus after \(\mathbf{k}\) iterations, its length is at most \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\)
- Hence after at most \(\log _{2} \mathbf{n}\) iterations, its length is at most \(\mathbf{1}\)
- Moreover, length is reduced by at least one at each iteration (as either low is set to mid +1 or high to mid - 1 , if \(\mathrm{L}[\) mid \(] \neq x\))
- Hence after at most \(\log _{2} \mathbf{n}+1\) iterations, its must be empty
- This shows that the worst case time \(=\mathbf{O}\left(\log _{2} \mathbf{n}+\mathbf{1}\right)=\mathbf{O}(\boldsymbol{\operatorname { l o g }} \mathbf{n})\)
- It is actually \(\Theta(\log n)\) : worst case when \(x\) is not in the list
- Best case time \(=\boldsymbol{\Theta}(\mathbf{1})\) : if \(\mathbf{x}=\mathbf{L}[\boldsymbol{m i d}]\) in the first iteration

\section*{II. 2 Insertion Sort: the Porting Problem}
- Input: list of \(n\) numbers \(\mathrm{L}=[\mathrm{L}[0], \mathrm{L}[1], \cdots, \mathrm{L}[n-1]]\)
- Objective: permute the elements of \(L\) so that they are sorted in nondecreasing order, i.e., \(\mathrm{L}[0] \leq \mathrm{L}[1] \leq \cdots \leq \mathrm{L}[n-1]\)
- Example:
- Input: \(\mathrm{L}=[8,2,4,9,3,2,6]\)
- Sorted: \(\mathrm{L}=[2,2,3,4,6,8,9]\)
- In PA 4, you implemented the Selection Sort algorithm, which takes \(\Theta\left(n^{2}\right)\) time
- Now: Insertion Sort, which also takes \(\Theta\left(n^{2}\right)\) time

\section*{II. 2 Idea of Insertion Sort}
- Idea: sorting a hand of cards
- First card: ok
- Compare second card with the first and insert in its correct place
- Compare the third card with the first and second card and insert it in its correct place
- And so on until you reach the last card

\footnotetext{
Figure 2.1 Sorting a hand of cards using insertion sort.
}

Figure 2.1 in [CLRS, page 17]

\section*{II. 2 Try it on an example}
\[
L=[5,2,4,6,1,3]
\]

\section*{II. 2 Try it on an example (Continued)}
\[
L=[5,2,4,6,1,3]
\]
(a) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline & 2 & 4 & 6 & 1 & 3 \\
\hline & & & & & \\
& & & &
\end{tabular}

Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Try it on an example (Continued)}
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
5 & 2,
\end{array} 4,6,1,3\right] \\
& \mathrm{L}=\left[\begin{array}{lll}
2,5, & 4, & 6, \\
\hline
\end{array}\right]
\end{aligned}
\]
(a) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 2 & 4 & 6 & 1 & 3 \\
\hline
\end{tabular}
(b) \begin{tabular}{|l|l|l|l|l|l|}
& 0 & 1 & 2 & 3 & 4 \\
2 & 5 & 4 & 6 & 1 & 3 \\
\hline
\end{tabular}

Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Try it on an example (Continued)}
\[
\begin{aligned}
& L=\left[\begin{array}{llllll}
5, & 2, & 4, & 6, & 3
\end{array}\right] \\
& L=\left[\begin{array}{llll}
2, & 5, & 4, & 6, \\
1 & 3
\end{array}\right] \\
& L=\left[\begin{array}{lll}
2, & 4, & 5, \\
1 & 3
\end{array}\right]
\end{aligned}
\]
(a) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 2 & 4 & 6 & 1 & 3 \\
\hline
\end{tabular}
(b) \begin{tabular}{|c|c|c|c|c|c|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 5 & 4 & 6 & 1 & 3 \\
\hline & & \(y\) & & &
\end{tabular}
(c) \begin{tabular}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 4 & 5 & 6 & 1 & 3 \\
\hline
\end{tabular}

Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Try it on an example (Continued)}
\[
\left.\begin{array}{l}
\mathrm{L}=\left[\begin{array}{lllll}
5, & 2, & 4, & 6, & 1,
\end{array}\right] \\
\mathrm{L}=\left[\begin{array}{llll}
2, & 5, & 4, & 6, \\
\hline
\end{array}\right] \\
\mathrm{L}=\left[\begin{array}{llll}
2, & 4, & 5, & 6, \\
\hline
\end{array}\right] \\
\mathrm{L}=\left[\begin{array}{lll}
2, & 4, & 5,
\end{array}\right]
\end{array}\right]
\]
(a) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 2 & 4 & 6 & 1 & 3 \\
\hline
\end{tabular}
(b) \begin{tabular}{c|c|c|c|c|c|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 5 & 4 & 6 & 1 & 3 \\
\hline & & \(y\) & & &
\end{tabular}
(c) \begin{tabular}{|l|l|r|r|r|r|}
\hline 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 4 & 5 & 6 & 1 & 3 \\
\hline
\end{tabular}
(d) \begin{tabular}{|l|l|l|lll}
\hline 2 & 4 & 5 & 6 & 1 & 3 \\
\hline
\end{tabular}

Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Try it on an example (Continued)}
\[
\begin{aligned}
& L=[5,2,4,6,1,3] \\
& L=[2,5,4,6,1,3] \\
& L=[2,4,5,6,1,3] \\
& L=[2,4,5,6,1,3] \\
& L=[1,2,4,5,6,3]
\end{aligned}
\]
(a) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 2 & 4 & 6 & 1 & 3 \\
\hline & & & & & \\
& & & &
\end{tabular}
(b) \begin{tabular}{|c|c|c|c|c|c|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 5 & 4 & 6 & 1 & 3 \\
\hline & & \(A\) & & & \\
\hline
\end{tabular}
(c) \begin{tabular}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 4 & 5 & 6 & 1 & 3 \\
\hline
\end{tabular}
(d)

(e) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 2 & 4 & 5 & 6 & 3 \\
\hline
\end{tabular}
Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Try it on an example (Continued)}
\[
\begin{aligned}
& L=[5,2,4,6,1,3] \\
& L=[2,5,4,6,1,3] \\
& L=[2,4,5,6,1,3] \\
& L=[2,4,5,6,1,3] \\
& L=[1,2,4,5,6,3] \\
& L=[1,2,3,4,5,6]
\end{aligned}
\]
(a) \begin{tabular}{|ccc|c|c|c|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 2 & 4 & 6 & 1 & 3 \\
\hline & & & & & \\
&
\end{tabular}
(b) \begin{tabular}{|l|l|l|l|l|l|}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 5 & 4 & 6 & 1 & 3 \\
\hline & & a. & & &
\end{tabular}
(c) \begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{} & 1 & 2 & 3 & 4 \\
\hline 2 & 4 & 5 & 6 & 1 & 3 \\
\hline
\end{tabular}
(d)

(e) \begin{tabular}{|l|l|l|l|l|l|}
& 0 & 1 & 2 & 3 & 4 \\
\hline & 2 & 2 & 4 & 5 & 6 \\
\hline
\end{tabular}
(f) \begin{tabular}{|l|l|l|l|l|l|}
& \multicolumn{1}{c}{} & 1 & 2 & 3 & 4 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
\hline
\end{tabular}

Edited version of Figure 2.2 in [CLRS, page 18]
- Black cell: value under consideration, called key
- Shaded cell: values compared to the key
- Shaded arrows: values moved the right
- Black arrow: where the key is inserted

\section*{II. 2 Insertion Sort function (Continued)}
```

125 def insertionSort(L):
126 n = len(L)
127 for j in range(1,n):
128 \# Insert L[j] into the sorted sequence L[0\cdotsj-1]
129 key = L[j] \# Save L[j] in key to avoid loosing it

```

\section*{II. 2 Insertion Sort function (Continued)}
```

125 def insertionSort(L):
126 n = len(L)
127 for j in range(1,n):
128 \# Insert L[j] into the sorted sequence L[0\cdotsj-
129 key = L[j] \# Save L[j] in key to avoid loosing i
130 i = j-1
131 while i>=0 and L[i] > key:
132
133
134
L[i+1] = key

```
- Function modifies input list L: it has no return value

\section*{II. 2 Insertion Sort function (Continued)}
```

125 def insertionSort(L):
126 n = len(L)
127 for j in range(1,n):
128 \# Insert L[j] into the sorted sequence L[0\cdotsj-1]
129 key = L[j] \# Save L[j] in key to avoid loosing it
130 i = j-1
131 while i>=0 and L[i] > key:
132 133 L[i+1]= L[i] \# move L[i] forward
134 L[i+1] = key
135
136L = [1, 5,17, 3-1, 0,17.3, 105, 56.9]
137 insertionSort(L)

```
- Function modifies input list L : it has no return value

\section*{II. 2 Time Analysis Insertion Sort}
- We have two nested loops each running for at most \(n\) steps
- Thus the worst case time is \(0\left(\mathrm{n}^{2}\right)\) steps
- By more carful analysis, we will show below that it is \(\Theta\left(n^{2}\right)\)
- Analysis similar to element distinctness algorithm

\section*{II. 2 Time Analysis Insertion Sort (Continued)}
- Worst case when array in reverse order: inner while loop will always go def insertionSot(L): back \(i=0\) and stop at \(i=-1\)
```

n = len(L)

```
- Thus at the \(j^{\prime}\) th iteration of the outer loop, the inner loop takes \(\Theta\) (j) steps. Therefore, the \(j^{\prime}\) th iteration of the outer loop takes \(\Theta\) (j) steps
- Hence total worst case running time:
\[
\Theta(n)+\sum_{j=1}^{n-1} \Theta(j)=\Theta\left(\sum_{j=1}^{n-1} j\right)=\Theta\left(n^{2}\right)
\]
for \(j\) in range \((1, n)\) :
key \(=\mathrm{L}[j]\), (\({ }^{(1)}\)
\(i=j-1 \quad \Theta(j)\)
while \(i>=0\) and \(L[i]>\) key:
\(\mathrm{L}[\mathrm{i}+1]=\mathrm{L}[\mathrm{i}]\)
\(i=i-1\)
\(L[i+1]=\) key \(-\Theta(1)\)
\(\Theta(\mathrm{j})\) steps

\section*{II. 2 Selection Sort versus Insertion Sort}
\begin{tabular}{|l|l|l|}
\hline & Selection Sort & Insertion Sort \\
\hline \begin{tabular}{l}
Worst case \\
running time
\end{tabular} & & \\
\hline \begin{tabular}{l}
Best case running \\
time
\end{tabular} & & \\
\hline
\end{tabular}

\section*{II. 2 Selection Sort versus Insertion Sort (Continued)}
\begin{tabular}{|l|c|c|}
\hline & Selection Sort & Insertion Sort \\
\hline \begin{tabular}{l}
Worst case \\
running time
\end{tabular} & \(\Theta\left(n^{2}\right)\) & \(\Theta\left(n^{2}\right)\) \\
\hline \begin{tabular}{l}
Best case running \\
time
\end{tabular} & \(\Theta\left(n^{2}\right)\) & \(\Theta(n)\) \\
\hline \begin{tabular}{l}
Number of write \\
operations on list
\end{tabular} & & \\
\hline
\end{tabular}

\section*{II. 2 Selection Sort versus Insertion Sort (Continued)}
\begin{tabular}{|l|c|c|}
\hline & Selection Sort & Insertion Sort \\
\hline \begin{tabular}{l}
Worst case \\
running time
\end{tabular} & \(\Theta\left(n^{2}\right)\) & \(\Theta\left(n^{2}\right)\) \\
\hline \begin{tabular}{l}
Best case running \\
time
\end{tabular} & \(\Theta\left(n^{2}\right)\) & \(\Theta(n)\) \\
\hline \begin{tabular}{l}
Number of write \\
operations on list
\end{tabular} & \(\Theta(n)\) & \begin{tabular}{c}
\(\Theta\left(n^{2}\right)\) \\
Worst case
\end{tabular} \\
\hline
\end{tabular}
III. Time analysis of some list operations and methods

\section*{III. 1 Time analysis of basic list operations and methods}

Assume below that objects in lists are \(\Theta(1)\)-size scalars (i.e., integers of size \(\Theta(1)\) or objects of type float, bool, or None)
\begin{tabular}{|l|l|l|}
\hline Equality check: L1==L2 & & \\
\hline Concatenation: L = L1+L2 & & \\
\hline Membership test: e in L & & \\
\hline Slicing: L[i:j+1] & & \\
\hline L.count(e) & & \\
\hline L.index(e) & & \\
\hline L.reverse(e) & & \\
\hline
\end{tabular}

\section*{III. 1 Time analysis of basic list operations and methods (Continued)}

Assume below that objects in lists are \(\Theta(1)\)-size scalars (i.e., integers of size \(\Theta(1)\) or objects of type float, bool, or None)
\begin{tabular}{|l|l|l|}
\hline Equality check: L1==L2 & \(\Theta(\min (\operatorname{len}(L 1), \operatorname{len}(L 2))\) & PA 3.Problem 2.b \\
\hline Concatenation: \(\mathrm{L}=\mathrm{L} 1+\mathrm{L2}\) & \(\Theta(\operatorname{len}(\mathrm{~L} 1)+\operatorname{len}(\mathrm{L2}))\) & \\
\hline Membership test: e in L & \(\Theta(\operatorname{len}(\mathrm{L} 1))\) if e is a scalar & PSS 3.Prolem 1.b \\
\hline Slicing: \(\mathrm{L}[\mathrm{i}: j+1]\) & \(\Theta(\mathrm{j}-\mathrm{i})\) & \\
\hline L.count(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.a \\
\hline L.index(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.b \\
\hline L.reverse(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.c \\
\hline
\end{tabular}

\section*{III. 1 Time analysis of basic list operations and methods (Continued)}

Assume below that objects in lists are \(\Theta(1)\)-size scalars (i.e., integers of size \(\Theta(1)\) or objects of type float, bool, or None)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & Equality check: L1==L2 & \(\Theta(\min (\operatorname{len}(\mathrm{L} 1), \mathrm{len}(\mathrm{L} 2) \mathrm{)}\) & PA 3.Problem 3.b \\
\hline & Concatenation: L = L1+L2 & \(\Theta(\operatorname{len}(\mathrm{L} 1)+\operatorname{len}(\mathrm{L} 2))\) & \\
\hline & Membership test: e in L & \(\Theta(\operatorname{len}(\mathrm{L} 1)\)) if e is a scalar & PSS 3.Prolem 1.b \\
\hline & Slicing: L[i:j+1] & \(\Theta(\mathrm{j}-\mathrm{i})\) & \\
\hline & L.count(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.a \\
\hline & L.index(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.b \\
\hline & L.reverse(e) & \(\Theta(\operatorname{len}(\mathrm{L}))\) & PSS 4.Problem 1.c \\
\hline
\end{tabular}

\section*{III. 2 List.append method}
- Recall from [Functions III.3] that in the worst case, a single L.append(e) operations takes \(\Theta\) (len(L)) time: if not enough contiguous cells are available, the whole list is copied to new place in memory and resized
- But the overhead on a long sequence of append operation is not substantial
- Why? The implementation of append in Python is something like the this: when append makes the list size a power of 2, the list is doubled, i.e., it is copied to new place in memory and resized to twice its size

\section*{III. 3 List.append method: amortized analysis}
reduce or pay off (a debt) with regular payments [Oxford Dictionaries]
- Consider the following sequence of append operations:
```

L = []
for i in range(n):
\# get e from somewhere, e.g., user input
L.append(e)

```
- Let \(k\) be the largest power of 2 less than \(n\), i.e., \(2^{k}<n\)
- Then for \(\mathrm{i}=1,2,2^{2}, 2^{3}, \ldots, 2^{\mathrm{k}}\), the cost of append is \(\Theta(2 i)=\Theta(i)\)
- For all other values of \(i\),the cost is \(\Theta(1)\)
- Thus total cost : \(\Theta(\mathrm{n})+\Theta\left(\sum_{t=0}^{k} 2^{t}\right)=\Theta(n)\) since \(\sum_{t=0}^{k} 2^{t}=2^{\mathrm{k}+1}-1<2 \mathrm{n}-1\)

\section*{III. 3 List.append method: amortized analysis (Continued)}
- Compare with \(\mathrm{L}=\mathrm{L}+[\mathrm{e}]\) :
```

L = []
for i in range(n):
\# get e from somewhere, e.g., user input
L=L+[e]

```
- For each i , the cost of \(\mathrm{L}=\mathrm{L}+[\mathrm{e}]\) is \(\Theta(\mathrm{i})\) (a new list is created)
- Thus total cost : \(\Theta\left(\sum_{i=0}^{n-1} i\right)=\Theta\left(n^{2}\right)\)

\section*{III. 4 List.sort method}
- List.sort takes \(\Theta(n \log n)\) time to sort a size-n list
- Much faster than Selection Sort and Insertion Sort, which take \(\Theta\left(n^{2}\right)\) time each
- Next topic is recursion
- Among other things, we will see how recursion can be used to sort in \(\Theta(n \log n)\) time```

