Introduction to Computation
and Programming

Program Efficiency, Binary Search, and
Insertion Sort

Reading: [Guttag, Chapter 9], [CLRS, Chap 1, Sections 2.1, 3.1]

[CLRS] (AUB E-book link) : “Introduction to Algorithms”, by T. H. Cormen, C. E.
Leiserson, R. L. Rivest, and C. Stein, MIT press, third edition, 2009, MIT press.

Slides prepared for EECE 230C, Fall 2018-19, MSFEA, AUB
Updated with minor edits during the offering of EECE 230, Spring 2018-19, MSFEA, AUB

Material in these slides is based on [Guttag, Chapter 9],
[CLRS, Chapters 1 and 2], and wiki.python.org

https://wiki.python.org/moin/TimeComplexity
http://vp9py7xf3h.search.serialssolutions.com/?V=1.0&N=50&tab=BOOKS&L=VP9PY7XF3H&S=AC_T_B&C=Introduction+to+algorithms

Outline

| * Program efficiency, algorithmic complexity
* Asymptotic notations: Theta, Big O, little o

* Time of analysis of:
» Linear search
» Element distinctness
»Programming Assignment 2 algorithms

* Binary Search
* Insertion Sort

* Time analysis of some list operations and methods

.1 Getting started: linear search

I &

 Consider the linear search

function (from PS§4,\W|’]i|€ 2
|OOpS VerSIOn): Problem Solving Session i
e Ifeisin L, function returns _
index of first occurrence)
returned. Otherwise, it N
returns -1 ;

def linearSearch(L,e):

n = len(L)
1 =0
while i< n:
if L[1]==e:

return 1
i=i+1
return -1

* Let T(n) = worst case running time of linearSearch on a size- n list

* Worst case: Adversary chooses L and e
* Why worst case? It gives a guarantee

EECE 230 - Introduction to Computation and Programming

.1 Getting started: linear search (Continued)

c; 1ldef linearSearch(L,e):

* Denote the cost, i.e., c, 2 n = len(L)

time, of Line i by c; C3 3 i=20

c, 4 while i< n:

* Worst case? s o it L[1]==e:
Ce 6 return 1
Co 7 i=i+1
Cg 8 return -1

EECE 230 - Introduction to Computation and Programming

.1 Getting started: linear search (Continued)

c; 1ldef linearSearch(L,e):

* Denote the cost, i.e., c, 2 n = len(L)

time, of Line i by c; C3 3 i=20

Ca 4 while i< n:

« Worst case ifenotinL & 7 1f L[1]==e:
Ce B return 1
Co 7 i=i+1

* Thus (worst case) time: Cg 8 return -1

EECE 230 - Introduction to Computation and Programming

.1 Getting started: linear search (Continued)

c; 1ldef linearSearch(L,e):

* Denote the cost, i.e., c, 2 n = len(L)
time, of Line i by c; C3 3 i=20

C, 4 while 1< n:
« Worst case ifenotinL & ° 1f L[1]==e:

Ce B return 1

. ¢z 7 1=1+1 \When while

* Thus (worst case) time: Cg 8

return 7 breaks at i=n

T(n) =c; +cy+c3 +(cy +c5+c7) XN+ cy+cg
= (€4 + 5 +Cc7) XN+ (c1+cy +c3 + c4+cg)
= (a constant) X n + (a negligable term comapred to n)

EECE 230 - Introduction to Computation and Programming

.2 Asymptotic analysis

* We can’t measure the running exactly as it depends on
» Interpreter’s implementation
» Computer speed

* Solution: asymptotic analysis: look at growth of T (n) as the input size
n — oo

* How does T'(n) scale as input size n doubles or gets multiplied by 107?

* Interested in the complexity of the algorithm and not its implementation
using a particular programming language or its speed on a specific machine
* Key:
» lgnore constants
» lgnore low order terms

.2 Asymptotic analysis (Continued)

* Examples:
»5|x n+(17 ———— Low order terms
>6|X n? 418 xn+5

N Constant

* Theta notation:
e 5XxXn+17
c6X n*+18xn+5
* 3 X log(n) +7
* 10

Constant
/

EECE 230 - Introduction to Computation and Programming

1.2 Asymptotic analysis (Continued)

« Examples: / Constant

»5|x n+(17 ———— Low order terms
»6|x n? +18xXn+5

™ Constant
* Theta notation:
e5xn+17 =0(n)
*6X n2+18xn+5 = 0(n?)
e 3Xxlogn +7 =0ogn)
10 = 0(1)

EECE 230 - Introduction to Computation and Programming

1.3 Theta notation: formal definition

* Definition: Let f(n) and g(n) be functions defined on the
nonnegative integers and taking real values.

Assume that for n large enough, f(n) = 0 and g(n) = 0.

We say that f(n) = G)(g(n)) if
lim AN a positive constant
n—oo g(n)

assuming that the limit exists.

1.3 Theta notation: formal definition
(Continued)

* Check above examples:

lim 227 =55 = 5xn+17 =0(n)

n—oo n

lim &EHIBXHS o g o> X n2 418X n+ 5 = @(nz)

n—o00 n2

AEE‘OBXEZ”::% >0 => 3 xlogn +7 =0(ogn)
lim = =10 > 0 => 10 =0(1)

n—>00

.4 Theta notation: more formal definition

More generally (even if limit doesn’t
exist), we say that f(n) = @(g(n)) if
for large values of n, f(n) can be

sandwiched between two positive
constant multiples of g(n), i.e.,

f(n)=O(gn))

[Figure 3.1 in “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]

.4 Theta notation: more formal definition

More generally (even if limit doesn’t
exist), we say that f(n) = @(g(n)) if

for large values of n, f(n) can be
sandwiched between two positive
constant multiples of g(n), i.e., there
exist ng > 0 and constantscy,¢c, > 0
such that for alln > n,,

0< c;xgn) < f(n) < c, xgn)

f(n) =0O(g(n))

[Figure 3.1 in “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]

.5 Working with Theta

Useful properties:

* f(n)=6(g(n)) =g = 6(f(n))

*0(g1(n)) + 0(g.(n))|=

means/

fi(n) + f,(n) for some
fi(n) = 0(g;(n)) and f,(n) = B(g(n))

EECE 230 - Introduction to Computation and Programming

.5 Working with Theta (Continued)

Useful properties:

* f(n)=0(g(n)) = gn) =6(f(n))
* 0(g1(n)) + 0(g2(n)) =06(g,(n) + g,(n))

* 0(g1(n)) x 8(g2(n)) =

.5 Working with Theta (Continued)

Useful properties: Examples:

+ f(n)=0(g(n)) = g(n) = O(f(n)) + 0(1) + 0(n) =
¢ O(n) +0(n) =

* 0(g1(n)) + 0(g.(n)) =0(g1(n) + g2(n)) <+ 6(1) Xn =
*O(n) Xn =

* 0(g1(n)) X 0(g2(n)) =0(g;(n) X g2(n))

.5 Working with Theta (Continued)

Useful properties: Examples:
* f(n)=0(g(n)) = g(n) = 6(f(n)) * (1) +6(n) =0(n)
*O(n)+0(n) =0(n)
* 0(g9:(n)) +06(g2(n)) =06(g:(n) + g2(n)) +06(1) xn=0(mn)
» O(n) X n = 0(n?)
* 0(g1 (M) X B(g,(n)) =06(g,(n) X g,(n))

.5 Working with Theta: linear Search running
time (Continued)

1 def linearSearch(L,e):

* Instead of using 2 n = len(L)
constants, use 0 3 i1 =20
notation 4 while i< n:
e Worst case if e not in L : 1f L[1]==e:
, , 6 return 1
* Worst case running time 7 i=i+1
of linearSearch: - return -1

T(n) = O(n) steps

* Note that indexing operator L[i] takes ®(1) time: recall for the lists
lectures that they are implemented using contiguous memory cells
* Best case running time:

EECE 230 - Introduction to Computation and Programming

.5 Working with Theta: linear Search running
time (Continued)

1 def linearSearch(L,e):

* Instead of using 2 n = len(L)
constants, use 0 3 i1 =20
notation 4 while i< n:
e Worst case if e not in L : 1f L[1]==e:
, , 6 return 1
* Worst case running time 7 i=i+1
of linearSearch: - return -1

T(n) = O(n) steps

* Note that indexing operator L[i] takes ®(1) time: recall for the lists
lectures that they are implemented using contiguous memory cells
e Best case running time: ©(1) steps (if L[0] == e)

EECE 230 - Introduction to Computation and Programming

.5 Working with Theta: searching for two
elements

def linearSearchForTwoElements(L,el,e2):
il = linearSearch(L,el)
12 = linearSearch(L,e2)
return (11,12)

e \WWorst case time:

EECE 230 - Introduction to Computation and Programming

.5 Working with Theta: searching for two
elements (Continued)

def linearSearchForTwoElements(L,el,e2):
0(n) il = linearSearch(L,el)
0(n) i2 = linearSearch(L,e2)
return (11,12)

Passing parameters to function and return
pd

e Worst case time: O(n)+0(n)+0(1) = O(n) steps
* Two sequential loops: ©(n)+0(n) = O(n)

* Nesting loops costs more

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function

def naiveDistinctElements(L):

* From the lists lectures n = len(L)
(function version): start with for i in range(n):
naive version for j in range(n):

if 1l=3 and L[1]==L[]]:
return False
return True

 Worst case ?

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function (Continued)

def naiveDistinctElements(L):

* From the lists lectures n = len(L)
(function version): start with for i in range(n):
naive version for j in range(n):

. : . O(n) if il=j and L[i]==L[7]:
Worst case if all distinct return False

* Inner loop takes ©(n) steps return True
e Thus total worst case time of naiveDistinctElements is

O(n) +n X O(n) = O(n?) steps

N

Control of outer for, passing
parameters to function, final return

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function (Continued)

def naiveDistinctElements(L):

* From the lists lectures n = len(L)
(function version): start with for i in range(n):
naive version for j in range(n):

O(n) if il=j and L[i]==L[7j]:

 Worst case if all distinct return False

* Inner loop takes ©(n) steps return True
e Thus total worst case time of naiveDistinctElements is

O(n) +n X O(n) = O(n?) steps
* Nested loops
* Best case running time:

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function (Continued)

def naiveDistinctElements(L):

* From the lists lectures n = len(L)
(function version): start with for i in range(n):
naive version for j in range(n):

. : . O(n) if il=j and L[i]==L[7]:
Worst case if all distinct return False

* Inner loop takes ©(n) steps return True
e Thus total worst case time of naiveDistinctElements is

O(n) +n x O(n) = O(n?) steps
* Nested loops
 Best case running time: ©(1) (if L[0]==L[1])

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function (Continued)

def distinctElements(L):

* Now consider less naive n = len(L)
function: for i in range(n):
e Worst case? for j in range(i+l,n):
' if L[1]==L[7]:

return False
return True

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness

function (Continued)
def distinctElements(L):

* Now consider less naive n = len(L)
function: for 1 in range(n):

for j in range(i+l,n):
if L[1]==L[]]:
return False

e Worst case if distinct, in which O(n —1i)
case inner loop takes ©O(n — i)

steps return True

EECE 230 - Introduction to Computation and Programming

.6 Time analysis of element distinctness
function (Continued)

def distinctElements(L):

* Now consider less naive n = len(L)
function: for 1 in range(n):
. . L. . . + 11 '+1_-| .
e Worst case if distinct, in which O(n —1i) or Jiflf[ﬁ:EEE;]_ n)
case inner loop takes O(n — i) return Ealse
steps return True

* Therefore, worst case running time of distinctElements is G)(nz):
T(n) = 0(n) + X0 0(n — i) = O(XS5 (n — i) = 6(n?)

(sinceYtn—D=n+n-1D++1 = n("zﬂ))

e Thatis, the speedup trick (j =i + 1) only changed T(n) by a constant

EECE 230 - Introduction to Computation and Programming

.7 Other asymptotic notations

Theta: f(n) = 0(g(n)) f(n) is asymptotically like
g(n)

Big0: f(n) = 0(g(n)) f(n) is asymptotically like
g(n) or weaker than g(n)

Littleo: f(n) = o(g(n)) f(n) is asymptotically
weaker than g(n)

EECE 230 - Introduction to Computation and Programming

.7 Other asymptotic notations (Continued)

Theta: f(n) = 0(g(n)) f(n) is asymptotically like
g(n)

Big0: f(n) = 0(g(n)) f(n) is asymptotically like
g(n) or weaker than g(n)

There existc > 0 and ny >
0 such that for all n > n,,

0<f(n)<cxghn)

Littleo: f(n) = o(g(n)) f(n) is asymptotically
weaker than g(n)

f)
Jim oy = O

* Note: f(n) = O(g(n)) and g(n) = O(f(n)) < f(n) = @(g(n))

* Notational difference compared to [Guttag]:
 f=0(g) in[Guttag] meansf = O(g) here
« f€ 0(g) in[Guttal] meansf = 0(g) here

.7 Other asymptotic notations: examples

*5xn?+1000xn+17 0O(n?)
*5xn?2+1000xn+17 0(n?)

_ e5xn?4+1000xn+17 #o(n%)
*5xn?+1000xn+ 17 # 0(n3)
*5xn?2+1000xn+17 O(n3)

"5 XNt + 000X+ 17 o(n°)
e 5Xn°+1000xn+17 0O(n)

e 5Xn*+1000xn+17 O0O(n)
*5Xxn?+1000xn+17 o(n)

.7 Other asymptotic notations: examples
(Continued)

* 5xn?+1000xn+ 17 = 0(n?)
* 5xn?+1000xn+ 17 = 0(n?)
o 2 2

*5xn?+1000xn+ 17 # 0(n3)
* 5xn? 41000 xn+ 17 = 0(n3)

*5 XNt + 000X+ 17 =o(n")
e 5Xn®+1000xn+ 17 = 0(n)

e 5Xn®+1000xn+ 17 = 0(n)
*5Xxn%+1000 X n+ 17 # o(n)

.7 Other asymptotic notations (Continued)

 Say that you have an algorithm with worst case running time T(n)
* What does T(n) = @(g(n)) mean?

* What does T(n) = O(g(n)) mean?

* What does T(n) = o(g(n)) mean?

.7 Other asymptotic notations (Continued)

 Say that you have an algorithm with worst case running time T(n)

* What does T(n) = @(g(n)) mean? The worst case running time grows
like g(n), i.e., g(n) is an asymptotic worst case guarantee which is
attainable.

* What does T(n) = O(g(n)) mean? The worst case running time grows
like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case
guarantee which may or may not be attainable.

* What does T(n) = o(g(n)) mean? The algorithm is asymptotically
much faster than g(n)

.8 Common growth rates

* ®(1) is called constant running time

* O(logn) is called logarithmic running time
* ®(n) is called linear running time

* O(n log n) is called log-linear running time

» ©(n?) is called quadratic running time

 O(nX),where k > 0 is a constant, is called polynomial running time
* O(c™), where c > 1 is a constant, is called exponential running time

.9 Comparison of common growth rates

20

Constant {20) vs. Log

i

o s i R
P R L AT b
T
gy A |
il {
F

Time
o

T
- consiart{ll]

0

1000000 2000000 3000000 4000000 5000000
Input Size

Figure 9.7 Constant, logarithmic, and linear growth

lime

Log vs. Linear

1000

e— w
=i IBRF |
800
&00
A00
200
00 200 400 ,E’Dﬂ 800
Input Size

[Guttag, 2016, Chapter 9]

EECE 230 - Introduction to Computation and Programming

1000

.9 Comparison of common growth rates
(Continued)

Linear vs. Log-linear Log-linear vs. Quadratic

10000 1000000 — :
—_— T __-\.' — ﬂl'.]'IIT“!Ir
wer Q- Brear . st U SOFREIC |
8000 BOO000 |
6000 4 600000 |
W e E
E -—
= ¥ =
4000 400000}
2000 200000/
& p— SATE
i ——I—— q -
% 200 aoo 600 B0 1000 0 200 a0 600 800 1000
Input Size Input Size

Figure 9.8 Linear, log-linear, and quadratic growth
[Guttag, 2016, Chapter 9]

EECE 230 - Introduction to Computation and Programming

.9 Comparison of common growth rates

(Continued)

%19303 Quadratic vs. Exponential Quadratic vs. Exponential
1.2~ e —— e S— “ - ———— T ™
—)0 P 10°% || == quadratic
wie emponential | 'I.U?H s emporential
10°%
0.8 1019
1
o ‘IGIH
goj E 10
_ b mu;
110
0.4 1 1;“
10*
-II}4"
lﬂ}'r .UII."I-

e 200 200 600 8O0 1000 10g 200 400 "G00 DoO
Input Size Input Size

Figure 9.9 Quadratic and exponential growth
[Guttag, 2016, Chapter 9]

EECE 230 - Introduction to Computation and Programming

i

.10 Examples from Programing Assignments
(PA) 1 and 2

* [PA1.Problem 4] Quadratic equations solver:
* [PA2.Problem 1.a] Time to find the factorial of a given number n:

* [PA2.Problem 2] Time to find the max in a sequence of n number
entered by user:

»Space (memory):
* [PA2.Problem 3.a] Time to check if a given number n is prime:

.10 Examples from Programing Assignments
(PA) 1 and 2 (Continued)

* [PA1.Problem 4] Quadratic equations solver: ©(1) time

* [PA2.Problem 1.a] Time to find the factorial of a given number n: ©(n)
arithmetic operations (for large n, multiplications and additions cost more
than ©(1) time)

* [PA2.Problem 2] Time to find the max in a sequence of n number entered
by user: ©(n) time

»Space (memory): O(1)
* [PA2.Problem 3.a] Time to check if a given number n is prime: @(\/n)

arithmetic operations
(best known poly-log: @((log n)c),where c > 0 is a constant)

EECE 230 - Introduction to Computation and Programming

.10 Examples from Programing Assignment

(PA) 2 (Continued)

\ 7 \

* [PA2.Problem 4.a] Time to 23 def :i.sSquareBisectinn(n):

: . . 24 1f n<@: return False
check if a given number n is . olif n ==0:return True
square: 26 else:

_ 27 low = 1
* [PA2.Problem 4.b] Time to 58 high = n
check if a given number n is 29 while low<=high:
square using bisection 30 mid = (lowthigh)//2
method (function version): i 1 mid*mid ==n:
) 32 return True
33 elif mid*mid<n:
34 low = mid+1
35 else:

36
37

high = mid-1
return False

EECE 230 - Introduction to Computation and Programming

.10 Examples from Programing Assignment

(PA) 2 (Continued)

e [PA2.Problem 4.a] Time to

check if a given number n is &

. . 25

square: @(\/n) arithmetic -6
operations 27

* [PA2.Problem 4.b] Time to 28
check if a given number n is gz
sguare using bisection 31
method (function version): -

* O(logn) arithmetic 33
operations 34

* Why? -

37

23 def isSquareBisection(n):

if n<@: return False
elif n ==8@:return True
else:
low = 1
high = n
while low<=high:
mid = (low+high)//2
if mid*mid ==n:
return True
elif mid*mid<n:
low = mid+1
else:
high = mid-1
return False

EECE 230 - Introduction to Computation and Programming

.11 Time analysis of square-root test using
pisection

* |nitial search interval consists of the integers in [1, n]

e After each iteration of the while loop, the length of the search interval is
reduced by at least half

* Thus after k iterations, its length is at most n/2K
* Hence after at most log, n iterations, its length is at most 1

* Moreover, it is reduced b\ilgt least one integer at each iteration (as either
low is set to mid + 1 or high to mid — 1 ,if mid X mid # n)

* Hence after at most log, n + 1 iterations, its must be empty

* Thus, the worst case time: Oglogz n + 1) = 0(logn) arithmetic
operation (Big O in Section |.7 above)

* |tis actually © (logn) : worst case when n is not square

*Binary Search
*|nsertion Sort

EECE 230 - Introduction to Computation and Programming

1.1 Binary Search: the problem of
searching sorted lists

* When we have many search queries, it is more efficient to
first sort the list and implement the search queries using a
searching algorithm smarter than linear search, which
takes linear time

* Given a list L[0...n-1] of integers sorted in non-decreasing
order and a number x, check if x isin L: if found return an
index isuch that L[i]= x, otherwise return -1

1.1 Idea of Binary Search

e Same as the bisection method

 Compare x with the middle element of L

f >, we can ignore the lower half of L since L is sorted
f <, we can ignore the upper half of L since L is sorted

f =, we are done (x is an element of L)
Repeat

1.1 Try it on a example

Try it on:
a. L=[-3,-2,1,1,2,3,5,6,8,9,17]and x=5
b. Same Lwithandx=4

I1.1.a Binary search for5in [-3,-2,1,1,2,3,5, 6, 8, 9,17]

I1.1.a Binary search for5in [-3,-2,1,1,2,3,5, 6, 8, 9,17]

EECE 230C - Introduction to Computation and Programming

I1.1.a Binary search for5in [-3,-2,1,1,2,3,5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10
[-3)_2) ;1)2)31 5) 6) 8) 9/17]
6 7 8 9 10

[5, 6, 8,9,17]

EECE 230C - Introduction to Computation and Programming

I1.1.a Binary search for5in [-3,-2,1,1,2,3,5, 6, 8, 9,17]

0 1 2 3 4 5 6 7 8 9 10
[-3)_2) ;1)2)31 5) 6) 8) 9/17]
6 7 8 9 10

[5, 6, 8,9,17]

6 7

[5, 6]

EECE 230C - Introduction to Computation and Programming

I1.1.a Binary search for5in [-3,-2,1,1,2,3,5, 6, 8, 9,17]

6 7 8 9 10

[5, 6, 8,9,17]

6 7

[5, 6]

Return the index 6 of 5

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

O 1 2 3 4 5 9 10

6 7 8
[_3)_21111)2)31 51 6) 81 9)17]

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

O 1 2 3 4 5 9 10

6 7 8
[_3)_21111)2)31 51 6) 81 9)17]

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

o 1 23 4 5 6 7 8 9 10

[_3)_21111)2)31 51 6) 81 9)17]

6 7 8 9 10

5,6, 8,9,17]

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

o 1 23 4 5 6 7 8 9 10

[_3)_2111112)31 5) 6) 81 9;17]

6 7 8 9 10

5,6, 8,9,17]

6 7

[5, 6]

EECE 230C - Introduction to Computation and Programming

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

o 1 23 4 5 6 7 8 9 10

[_3)_2111112)31 5) 6) 81 9;17]

6 7 8 9 10

5,6, 8,9,17]

6 7

[5, 6]
[]

EECE 230C - Introduction to Computation and Programming

11.1.b Binary search for4in [-3,-2,1,1,2,3, 5,6, 8, 9,17]

o 1 23 4 5 6 7 8 9 10

[_3)_21111)2)31 51 6) 81 9)17]

6 7 8 9 10

5,6, 8,9,17]

6 7

[5, 6]
[]

Empty search interval: return -1

II.1 Elaborate on idea

* We need 3 variables: low, mid, and high
* Initially: low = 0 and high = n-1

 Compute: mid=(n-1)//2
(floor of (n-1)/2, i.e., largest integer less than or equal to (n-1)/2)

* If x==A[mid], done: return mid

* If Limid]<x, update low = mid +1 and keep high the same
* If Limid]>x, update high = mid -1 and keep low the same
e Re-compute: mid = (low+high)//2

* Repeat this process until either x is found or low > high, in which
case return -1

1.1 Binary Search function

95 def binarySearch(L, x):

96
97
98
99
100
101
102
103
104
105
106
107

n = len(L)
low = @
high = n-1

while low<=high:
mid = (low+high)//2
if L[mid] == X:
return mid
elif L[mid]<x:
low = mid+l
else:
high = mid-1
return -1

EECE 230 - Introduction to Computation and Programming

1.1 Binary Search time analysis: same as
square-root bisection

* Initially, list size is n

e After each iteration of the while loop, the length of the sub-list
L[start ... end] is reduced by at least half

* Thus after k iterations, its length is at most n/2k
* Hence after at most log, n iterations, its length is at most 1

* Moreover, length is reduced by at least one at each iteration (as either
low is set to mid + 1 or high to mid — 1, if Ljmid] + x)

* Hence after at mostlog, n + 1 iterations, its must be empty

* This shows that the worst case time = O(log, n + 1) = 0(logn)
* Itis actually ® (logn) : worst case when x is not in the list

* Best case time = O (1): if x== L[mid] in the first iteration

1.2 Insertion Sort: the Porting Problem

 Input: list of n numbers L =[L[O], L[1],---, L[n-1]]

* Objective: permute the elements of L so that they are sorted in non-
decreasing order, i.e., L[0] £ L[1] £---<L[n-1]

* Example:
e Input: L=[8, 2, 4,9, 3,2, 6]
e Sorted: L=[2, 2,3,4,6,8,9]

* In PA 4, you implemented the Selection Sort algorithm, which takes
0 (n?) time

 Now: Insertion Sort, which also takes ® (nz) time

1.2 Idea of Insertion Sort

* |dea: sorting a hand of cards
* First card: ok

* Compare second card with the
first and insert in its correct place

 Compare the third card with the
first and second card and insert it
in its correct place

* And so on until you reach the last

Ca rd Figure 2.1 Sorting a hand of cards using insertion sort.

Figure 2.1 in [CLRS, page 17]

1.2 Try it on an example

L = [SI 2) 4) 6] 1) 3]

EECE 230 - Introduction to Computation and Programming

1.2 Try it on an example (Continued)

L = [5I 2) 4) 6) 1) 3]

_—

0 1 X 3
(a) 5H4 f
AL

Edited version of Figure 2.2 in [CLRS, page 18]

* Black cell: value under consideration, called key
* Shaded cell: values compared to the key

e Shaded arrows: values moved the right

* Black arrow: where the key is inserted

1.2 Try it on an example (Continued)

L = [5I 2) 4) 6) 1) 3]
L = [21 5) 4) 6) 1/ 3]

3 4 5 0 1 2 3 d4 5
|

0 1 2 3
(@) 554 b 3 by |2 5“6 1[3

Edited version of Figure 2.2 in [CLRS, page 18]

* Black cell: value under consideration, called key
* Shaded cell: values compared to the key

e Shaded arrows: values moved the right

* Black arrow: where the key is inserted

1.2 Try it on an example (Continued)

2 1 2 3 4 5

3 by |2 5'.6 113 {c)
| S,
S

: 3 4
1

1 2

| I

—_—

0 1 2 3
() Eai f
AL

,_
I
NN O
~» 00N
v B~ P
a O O
G
w W w

Edited version of Figure 2.2 in [CLRS, page 18]

* Black cell: value under consideration, called key
* Shaded cell: values compared to the key

e Shaded arrows: values moved the right

* Black arrow: where the key is inserted

1.2 Try it on an example (Continued)

L=1[5
L=1[2
L=1[2
L=12

>~ B~ 0N

-

-

-

(S 2 N O 2 B S

-

-

GO O O O

-

-

-

R R

EV

{d)

1 i

d 5 0 1 2 3 4 5
|

2 3 4
1

bl |2

o | e

1 i

3 by [2 5“5 1|3 (ch 1[5
‘i Al i
1"'\-_"_/'"'". !

0
5 B 4
2
01
4

I
2

5| 6 1i
: K

h—f

Edited version of Figure 2.2 in [CLRS, page 18]

* Black cell: value under consideration, called key
* Shaded cell: values compared to the key

e Shaded arrows: values moved the right

* Black arrow: where the key is inserted

1.2 Try it on an example (Continued)

5,2,4,6,1,3 0 3 4 5 01 2 3 4 5
(a) |3 41613 (b} cy |24 |35 113
1=[2,5 4, 6 1, 3] A5 g
L= 2/ 4) 5/ 6; 1; 3 (d) ED :I ; ;ﬁ:i © METasTe|m
NUALACAY
L=12, 4,5, 6, 1, 3
L=[1, 2 4 5 6 3 Edited version of Figure 2.2 in [CLRS, page 18]

* Black cell: value under consideration, called key
* Shaded cell: values compared to the key

e Shaded arrows: values moved the right

* Black arrow: where the key is inserted

EECE 230 - Introduction to Computation and Programming

1.2 Try it on an example (Continued)

’ 1)

:5,2,4,6 3 0 i d4 5 0 1 2 3 4 5
] _ [a}ﬁ_iﬁ-l_ﬁ (b} cy (24|35 113
1=[2,5 4, 6 1, 3] A5 g
L=1[2, 4,5 6, 1, 3] « ENEHEE] «© SN NHBOEL
i] AL A
L=12,4,5, 6, 1, 3
L=[1,2, 4 5, 6 3 Edited version of Figure 2.2 in [CLRS, page 18]
L=[1, 2,3, 4, 5, 6] * Black cell: value under consideration, called key

* Shaded cell: values compared to the key
e Shaded arrows: values moved the right
* Black arrow: where the key is inserted

EECE 230 - Introduction to Computation and Programming

1.2 Insertion Sort function (Continued)

125 def insertionSort(L):
126 n = len(L)

127 for j in range(1,n):
128

129 key = L[3]

EECE 230 - Introduction to Computation and Programming

1.2 Insertion Sort function (Continued)

125 def insertionSort(L):
126 n = len(L)

127 for j in range(1l,n):
128

129 key =L
130 = j-1
131 whlle 1>=0 and L[1] > key:
132 L[i+1] = L[1i]

133 1 1 -1

134 L[i+1] =

[]]

* Function modifies input list L: it has no return value

EECE 230 - Introduction to Computation and Programming

1.2 Insertion Sort function (Continued)

125 def insertionSort(L):
126 n = len(L)
127 for 3 in range(1l,n):

128

129 key = L[7]

130 i=j-1

131 while 1»>=@ and L[1] > key:
132 L[i+1] = L[i]

133 1 i -1

134 L[i+1] = Kk

135

136L = [1, 5,17, 3 -1, ©,17.3, 185, 56.9]
137 insertionSort(L)

* Function modifies input list L: it has no return value

EECE 230 - Introduction to Computation and Programming

1.2 Time Analysis Insertion Sort

* We have two nested loops each running for at most n steps
* Thus the worst case time is O (nz) steps

* By more carful analysis, we will show below that it is @(nz)

* Analysis similar to element distinctness algorithm

1.2 Time Analysis Insertion Sort

(Continued)

* Worst case when array in reverse
order: inner while loop will always go def insertionSot(L):

backi = 0andstopati = —1
* Thus at the j'th iteration of t

outer loop, the inner loop takes

ne

O (j) steps. Therefore, the j't]
iteration of the outer loop take
O (j) steps

* Hence total worst case running time:
o(n) + X721 00) = 0(Tj=1j) = 0(n?)

EECE 230 - Introduction to Computat

1
S

n = len(L)

for j in range(l,n):

1 = 1-1

o |

key = L[3] /0 (1)

_— 9()

1 =1 -1

while i>=@ and L[1] > key:
L[i+1] = L

[1]

L[i+1] = key

— 0 (1)

\

O (j) steps

ion and Programming

1.2 Selection Sort versus Insertion Sort

Selection Sort Insertion Sort

Worst case
running time

Best case running
time

EECE 230 - Introduction to Computation and Programming

1.2 Selection Sort versus Insertion Sort
(Continued)

\ [4

Selection Sort Insertion Sort
Worst case 0(n?) 0(n?)
running time
Best case running ©(n?) O(n)
time

Number of write
operations on list

EECE 230 - Introduction to Computation and Programming

1.2 Selection Sort versus Insertion Sort
(Continued)

\ [4

Selection Sort Insertion Sort
Worst case 0(n?) 0(n?)
running time
Best case running @(nz) O(n)
time
Number of write O(n) 0(n?)
operations on list Worst case

EECE 230 - Introduction to Computation and Programming

1. Time analysis of some list operations and
methods

I11.1 Time analysis of basic list operations and
methods

Assume below that objects in lists are ®(1)-size scalars (i.e., integers of
size ©(1) or objects of type float, bool, or None)

Equality check: L1==L2

Concatenation: L =L1+L2

Membership test: e in L

Slicing: L[i:j+1]

L.count(e)

L.index(e)

L.reverse(e)

EECE 230 - Introduction to Computation and Programming

I11.1 Time analysis of basic list operations and
methods (Continued)

Assume below that objects in lists are ®(1)-size scalars (i.e., integers of
size ©(1) or objects of type float, bool, or None)

Equality check: L1==L2

O(min(len(L1), len(L2))

PA 3.Problem 2.b

Concatenation: L =L1+L2

O(len(L1)+len(L2))

Membership test: e in L

O(len(L1)) if e is a scalar

PSS 3.Prolem 1.b

Slicing: L[i:j+1]

O(j-i)

L.count(e) O(len(L)) PSS 4.Problem 1.a
L.index(e) O(len(L)) PSS 4.Problem 1.b
L.reverse(e) O(len(L)) PSS 4.Problem 1.c

EECE 230 - Introduction to Computation and Programming

I11.1 Time analysis of basic list operations and
methods (Continued)

same complexities

Assume below that objects in lists are ®(1)-size scalars (i.e., integers of
size ©(1) or objects of type float, bool, or None)

Equality check: L1==L2 O(min(len(L1), len(L2)) |PA 3.Problem 3.b
/v Concatenation: L = L1+L2 | ®(len(L1)+len(L2))
gox Membership test:einL | ®(len(L1))if eis ascalar |PSS 3.Prolem 1.b
g Slicing: L[i:j+1] O(j-i)
L.count(e) O(len(L)) PSS 4.Problem 1.a
L.index(e) O(len(L)) PSS 4.Problem 1.b
L.reverse(e) O(len(L)) PSS 4.Problem 1.c

EECE 230 - Introduction to Computation and Programming

11.2 List.append method

e Recall from [Functions Ill.3] that in the worst case, a single
L.append(e) operations takes ®(len(L)) time: if not enough
contiguous cells are available, the whole list is copied to new place in
memory and resized

* But the overhead on a long sequence of append operation is not
substantial

 Why? The implementation of append in Python is something like the
this: when append makes the list size a power of 2, the list is doubled,
l.e., itis copied to new place in memory and resized to twice its size

1.3 List.append method: |am/ortize\d analysis

reduce or pay off (a debt) with regular payments [Oxford Dictionaries]

e Consider the following sequence of append operations:

L =[]

for 1 in range(n):

L.append(e)
* Let k be the largest power of 2 less than n,i.e., 2% <n
 Then fori = 1,2,22,23, ..., 2K the cost of append is ©(2i) = 0(i)
* For all other values of i,the cost is ©(1)
* Thus total cost : O(n) + G)(Z{f:(, Zt) = O(n)
since Y¥_ 2t =2K"1—-1< 2n—-1

EECE 230 - Introduction to Computation and Programming

1.3 List.append method: amortized analysis
(Continued)

 Compare with L=L+[e]:
L =[]

for 1 in range(n):

L=L+[e]

* For each i, the cost of L=L+[e] is O(i) (a new list is created)
* Thus total cost : (X1, i) = 0(n?)

I11.4 List.sort method

* List.sort takes O@(nlogn) time to sort a size-n list

 Much faster than Selection Sort and Insertion Sort, which take
©(n?) time each

* Next topic is recursion

* Among other things, we will see how recursion can be used to sort in
O(nlogn) time

