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Leiserson, R. L. Rivest, and C. Stein, MIT press,  third edition, 2009, MIT press.
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Outline

• Program efficiency, algorithmic complexity 
• Asymptotic notations: Theta, Big O, little o
• Time of analysis of: 
Linear search
Element distinctness
Programming Assignment 2 algorithms

• Binary Search 
• Insertion Sort

• Time analysis of some list operations and methods 
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I.1 Getting started: linear search 

• Let 𝑇(𝑛) = worst case running time of linearSearch on a size- 𝑛 list 
• Worst case: Adversary chooses L and e 
• Why worst case? It  gives a guarantee 
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• Consider the linear search 
function (from PSS 4, while 
loops version): 

• If e is in L, function returns 
index of first occurrence 
returned. Otherwise, it 
returns -1  

Problem Solving Session  



I.1 Getting started: linear search (Continued)
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c1
c2
c3
c4
c5
c6
c7
c8

• Denote the cost, i.e., 
time,  of Line 𝑖 by c𝑖

• Worst case?  if e not in L

• Thus (worst case) time:    



I.1 Getting started: linear search (Continued)

𝑇 𝑛 = 𝑐1 + 𝑐2 +𝑐3 + 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + 𝑐4 +𝑐8
= 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + (𝑐1+𝑐2 +𝑐3 + 𝑐4 +𝑐8 )

= a constant × 𝑛 + (a negligable term comapred to 𝑛 )
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• Denote the cost, i.e., 
time,  of Line 𝑖 by c𝑖

• Worst case  if e not in L

• Thus (worst case) time:    



I.1 Getting started: linear search (Continued)

𝑇 𝑛 = 𝑐1 + 𝑐2 +𝑐3 + 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + 𝑐4 +𝑐8
= 𝑐4 + 𝑐5 +𝑐7 × 𝑛 + (𝑐1+𝑐2 +𝑐3 + 𝑐4 +𝑐8 )

= a constant × 𝑛 + (a negligable term comapred to 𝑛 )
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c1
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c8

• Denote the cost, i.e., 
time,  of Line 𝑖 by c𝑖

• Worst case  if e not in L

• Thus (worst case) time:    
When while 
breaks at i=n 



I.2 Asymptotic analysis

• We can’t measure the running exactly as it depends on 
 Interpreter’s implementation 
 Computer speed 

• Solution: asymptotic analysis: look at growth of 𝑇(𝑛) as the input size
𝒏 → ∞

• How does 𝑇(𝑛) scale as input size 𝑛 doubles or gets multiplied by 10?

• Interested in the complexity of the algorithm and not its implementation 
using a particular programming language or its speed on a specific machine  

• Key: 
 Ignore constants 
 Ignore low order terms 
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I.2 Asymptotic analysis (Continued) 

• Examples: 

5 × 𝑛 + 17

6 × 𝑛2 +18 × 𝑛 + 5

• Theta notation: 

• 5 × 𝑛 + 17

• 6 × 𝑛2 +18 × 𝑛 + 5

• 3 × log 𝑛 + 7

• 10
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Low order terms 

Constant

Constant



1.2 Asymptotic analysis (Continued)  

• Examples: 

5 × 𝑛 + 17

6 × 𝑛2 +18 × 𝑛 + 5

• Theta notation: 

• 5 × 𝑛 + 17 = Θ 𝑛

• 6 × 𝑛2 +18 × 𝑛 + 5 = Θ 𝑛2

• 3 × log 𝑛 + 7 = Θ log 𝑛

• 10 = Θ 1
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Low order terms 

Constant

Constant



1.3 Theta notation: formal definition

• Definition: Let f 𝑛 and g 𝑛 be functions defined on the 
nonnegative integers and taking real values.  

Assume that for 𝑛 large enough, f 𝑛 ≥ 0 and g 𝑛 ≥ 0.  

We say that f 𝑛 = Θ 𝑔 𝑛 if

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= a positive constant 

assuming that  the limit exists. 

• Check above examples:
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1.3 Theta notation: formal definition 
(Continued) 
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• Check above examples:

lim
𝑛→∞

5×𝑛+17

𝑛
= 5 > 0 =>     5 × 𝑛 + 17 = Θ 𝑛

lim
𝑛→∞

6× 𝑛2+18×𝑛+5

𝑛2
= 6 > 0 =>     6 × 𝑛2 +18 × 𝑛 + 5 = Θ 𝑛2

lim
𝑛→∞

3×log 𝑛+7

log 𝑛
= 3 > 0 =>     3 × log 𝑛 + 7 = Θ log𝑛

lim
𝑛→∞

10

1
= 10 > 0 =>    10 = Θ 1



I.4 Theta notation: more formal definition

More generally (even if limit doesn’t 
exist), we say that f 𝑛 = Θ 𝑔 𝑛 if

for large values of n, f 𝑛 can be 
sandwiched between two positive 
constant multiples of g(n), i.e., there 
exist  𝑛0 > 0 and constants c1, 𝑐2 > 0
such that for all 𝑛 > 𝑛0,

0 ≤ 𝑐1 × 𝑔 𝑛 ≤ f 𝑛 ≤ 𝑐2 × 𝑔 𝑛
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[Figure 3.1 in  “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]



I.4 Theta notation: more formal definition

More generally (even if limit doesn’t 
exist), we say that f 𝑛 = Θ 𝑔 𝑛 if

for large values of n, f 𝑛 can be 
sandwiched between two positive 
constant multiples of g(n), i.e., there 
exist  𝑛0 > 0 and constants c1, 𝑐2 > 0
such that for all 𝑛 > 𝑛0,

0 ≤ 𝑐1 × 𝑔 𝑛 ≤ f 𝑛 ≤ 𝑐2 × 𝑔 𝑛
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[Figure 3.1 in  “Introduction to Algorithms”, Cormen, Leriseron, Rivest, and Stein, 2009]



I.5 Working with Theta

Useful properties: 

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) =

EECE 230 - Introduction to Computation and Programming

𝑓1 𝑛 + 𝑓2 𝑛 for some                                 
𝑓1 𝑛 = Θ 𝑔1(𝑛) and 𝑓2 𝑛 = Θ 𝑔2(𝑛)

means



I.5 Working with Theta (Continued) 

Useful properties: 

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) =
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I.5 Working with Theta (Continued) 

Useful properties: 

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 × 𝑔2(𝑛)
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Examples: 

• Θ 1 + Θ 𝑛 =

• Θ 𝑛 + Θ 𝑛 =

• Θ 1 × 𝑛 =

• Θ 𝑛 × 𝑛 =



I.5 Working with Theta (Continued) 

Useful properties: 

• f(n)=Θ 𝑔(𝑛) ⇒ 𝑔 𝑛 = Θ 𝑓(𝑛)

• Θ 𝑔1(𝑛) + Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 + 𝑔2(𝑛)

• Θ 𝑔1(𝑛) × Θ 𝑔2(𝑛) = Θ 𝑔1 𝑛 × 𝑔2(𝑛)
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Examples: 

• Θ 1 + Θ 𝑛 = Θ 𝑛

• Θ 𝑛 + Θ 𝑛 = Θ 𝑛

• Θ 1 × 𝑛 = Θ 𝑛

• Θ 𝑛 × 𝑛 = Θ 𝑛2



I.5 Working with Theta: linear Search running 
time (Continued) 

𝑇 𝑛 = Θ 𝑛 steps 
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• Instead of using 
constants, use Θ
notation

• Worst case if e not in L 

• Worst case running time 
of linearSearch:

• Note that indexing operator L[i] takes Θ 1 time: recall for the lists 
lectures that they are implemented using contiguous memory cells

• Best case running time: 



I.5 Working with Theta: linear Search running 
time (Continued) 

𝑇 𝑛 = Θ 𝑛 steps 
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• Instead of using 
constants, use Θ
notation

• Worst case if e not in L 

• Worst case running time 
of linearSearch:

• Note that indexing operator L[i] takes Θ 1 time: recall for the lists 
lectures that they are implemented using contiguous memory cells

• Best case running time: Θ 1 steps   (if L[0] == e)



I.5 Working with Theta: searching for two 
elements
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• Worst case time:



I.5 Working with Theta: searching for two 
elements (Continued) 
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• Worst case time:   Θ 𝑛 +Θ 𝑛 +Θ 1 = Θ 𝑛 steps

• Two sequential loops:  Θ 𝑛 +Θ 𝑛 = Θ 𝑛

• Nesting loops costs more 

Θ 𝑛
Θ 𝑛

Passing parameters to function and return   



I.6 Time analysis of element distinctness 
function

• From the lists  lectures    
(function version): start with 
naive version  

• Worst case ?
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I.6 Time analysis of element distinctness 
function (Continued) 

• From the lists  lectures    
(function version): start with 
naive version  

• Worst case if all distinct 

• Inner loop takes Θ 𝑛 steps
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Θ 𝑛

• Thus  total worst case time of naiveDistinctElements is                           

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps 

Control of outer for, passing 
parameters to function, final return   



I.6 Time analysis of element distinctness 
function (Continued) 

• From the lists  lectures    
(function version): start with 
naive version  

• Worst case if all distinct 

• Inner loop takes Θ 𝑛 steps
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Θ 𝑛

• Thus  total worst case time of naiveDistinctElements is                           

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps 

• Nested loops 

• Best case running time:



I.6 Time analysis of element distinctness 
function (Continued) 

• From the lists  lectures    
(function version): start with 
naive version  

• Worst case if all distinct 

• Inner loop takes Θ 𝑛 steps
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Θ 𝑛

• Thus  total worst case time of naiveDistinctElements is                           

Θ 𝑛 + n × Θ 𝑛 = Θ 𝑛2 steps 

• Nested loops 

• Best case running time:  Θ 1 (if L[0]==L[1]) 



I.6 Time analysis of element distinctness 
function (Continued)

• Now consider less naive 
function: 

• Worst case? 
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I.6 Time analysis of element distinctness 
function (Continued)

• Now consider less naive 
function: 

• Worst case if distinct, in which 
case inner loop takes Θ 𝑛 − 𝑖
steps  
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Θ 𝑛 − 𝑖



I.6 Time analysis of element distinctness 
function (Continued)

• Now consider less naive 
function: 

• Worst case if distinct, in which 
case inner loop takes Θ 𝑛 − 𝑖
steps  
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Θ 𝑛 − 𝑖

• Therefore, worst case running time of distinctElements is 𝚯 𝐧𝟐 : 

T n = Θ 𝑛 + σ𝑖=0
𝑛−1Θ 𝑛 − 𝑖 = Θ( σ𝑖=0

𝑛−1 𝑛 − 𝑖 ) = Θ n2

(since σ𝑖=0
𝑛−1 𝑛 − 𝑖 = 𝑛 + 𝑛 − 1 +⋯+ 1 = 

𝑛 𝑛+1

2
)

• That is,  the speedup trick (𝑗 ≥ 𝑖 + 1) only changed T(n) by a constant  



I.7 Other asymptotic notations (Continued)

Theta: f n = Θ g n f(n) is asymptotically like 
g(n)

Big O: f n = O g n f(n) is asymptotically like 
g(n) or weaker than g(n)  

There exist c > 0 and 𝑛0 >
0 such that for all  𝑛 > 𝑛0, 

0 ≤ 𝑓 𝑛 ≤ 𝑐 × 𝑔(𝑛)

Little o: f n = o g n f(n) is asymptotically  
weaker than g(n)  lim

𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0
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• Note: f n = O g n and g n = O f n  f n = Θ g n
• Notational difference compared to [Guttag]: 

• f = O g in [Guttag] means f = Θ g here  
• f ∈ O g in [Gutta] means f = O g here



I.7 Other asymptotic notations (Continued)
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Little o: f n = o g n f(n) is asymptotically  
weaker than g(n)  lim

𝑛→∞

𝑓 𝑛

𝑔 𝑛
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• Note: f n = O g n and g n = O f n  f n = Θ g n
• Notational difference compared to [Guttag]: 

• f = O g in [Guttag] means f = Θ g here  
• f ∈ O g in [Gutta] means f = O g here



I.7 Other asymptotic notations: examples  
(Continued) 
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• 5 × 𝑛2 + 1000 × 𝑛 + 17 = Θ 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = o n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ O 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o(𝑛)



I.7 Other asymptotic notations: examples  
(Continued)
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• 5 × 𝑛2 + 1000 × 𝑛 + 17 = Θ 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o 𝑛2

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = O n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 = o n3

• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ Θ 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ O 𝑛
• 5 × 𝑛2 + 1000 × 𝑛 + 17 ≠ o(𝑛)



I.7 Other asymptotic notations (Continued)
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• Say that you have an algorithm with worst case running time T(n)

• What does T(n) = Θ g n mean? The worst case running time grows 
like g(n), i.e.,  g(n) is an asymptotic worst case guarantee which is 
attainable. 

• What does T(n) = O g n mean? The worst case running time grows 
like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case 
guarantee which may or may not be attainable. 

• What does T(n) = o g n mean? The algorithm  is asymptotically 
much faster than g(n)



I.7 Other asymptotic notations (Continued)
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• Say that you have an algorithm with worst case running time T(n)

• What does T(n) = Θ g n mean? The worst case running time grows 
like g(n), i.e.,  g(n) is an asymptotic worst case guarantee which is 
attainable. 

• What does T(n) = O g n mean? The worst case running time grows 
like g(n) or is weaker than g(n), i.e., g(n) is an asymptotic worst case 
guarantee which may or may not be attainable. 

• What does T(n) = o g n mean? The algorithm  is asymptotically 
much faster than g(n)



I.8 Common growth rates 

• Θ(1) is called constant running time

• Θ(log n )  is called  logarithmic running time

• Θ(n)  is called linear running time

• Θ(n log n ) is called log-linear running time

• Θ n2 is called quadratic running time

• Θ(nk),where 𝑘 > 0 is a constant,  is called polynomial running time

• Θ(𝑐𝑛), where c > 1 is a constant,  is called exponential running time
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I.9 Comparison of common growth rates 
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[Guttag, 2016, Chapter 9] 



I.9 Comparison of common growth rates 
(Continued) 
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[Guttag, 2016, Chapter 9] 



I.9 Comparison of common growth rates 
(Continued)
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[Guttag, 2016, Chapter 9] 



I.10 Examples from Programing Assignments 
(PA) 1 and 2 (Continued)
• [PA1.Problem 4] Quadratic equations solver: Θ 1 time 

• [PA2.Problem 1.a] Time to find the factorial of a given number n: 
Θ n artithmetic operations  (for large n, multiplications and 
additions cost more than Θ 1 time) 

• [PA2.Problem 2] Time to find the max in a sequence of 𝑛 number 
entered by user: Θ n time 
Space (memory): Θ 1

• [PA2.Problem 3.a] Time to check if a given number n is prime:  
Θ √n time                                                                                               
(best known  poly-log: Θ log 𝑛 𝑐 ,where c > 0 is a constant) 
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I.10 Examples from Programing Assignments 
(PA) 1 and 2 (Continued)
• [PA1.Problem 4] Quadratic equations solver: Θ 1 time 

• [PA2.Problem 1.a] Time to find the factorial of a given number n: Θ n
arithmetic operations  (for large n, multiplications and additions cost more 
than Θ 1 time) 

• [PA2.Problem 2] Time to find the max in a sequence of 𝑛 number entered 
by user: Θ n time 

Space (memory): Θ 1

• [PA2.Problem 3.a] Time to check if a given number n is prime:  Θ √n
arithmetic operations                                                                                               
(best known  poly-log: Θ log 𝑛 𝑐 ,where c > 0 is a constant) 
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I.10 Examples from Programing Assignment 
(PA) 2 (Continued)
• [PA2.Problem 4.a] Time to 

check if a given number n is 
square:  Θ √n time

• [PA2.Problem 4.b] Time to 
check if a given number n  is 
square using bisection 
method (function version): 

• Θ log𝑛 arithmetic 
operation  

• Why? 
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I.10 Examples from Programing Assignment 
(PA) 2 (Continued)
• [PA2.Problem 4.a] Time to 

check if a given number n is 
square:  Θ √n arithmetic 
operations

• [PA2.Problem 4.b] Time to 
check if a given number n  is 
square using bisection 
method (function version): 
• Θ log𝑛 arithmetic 

operations 

• Why? 
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I.11 Time analysis of square-root test using 
bisection  
• Initial search interval consists of the integers in  [1, n] 
• After each iteration of the while loop, the length of the search interval  is 

reduced by at least half   
• Thus after k iterations,   its length is at most 𝐧/𝟐𝐤

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 iterations, its length is at most 1 
• Moreover, it is reduced by at least one integer at each iteration (as either 
𝐥𝐨𝐰 is set to 𝐦𝐢𝐝 + 𝟏 or 𝐡𝐢𝐠𝐡 to 𝐦𝐢𝐝 − 𝟏 ,if 𝐦𝐢𝐝 ×𝐦𝐢𝐝 ≠ 𝐧 ) 

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 + 𝟏 iterations, its must be empty
• Thus, the worst case time: 𝐎( 𝐥𝐨𝐠𝟐 𝐧 + 𝟏) = 𝐎 𝐥𝐨𝐠 𝐧 arithmetic

operation (Big O in Section I.7 above) 
• It is actually 𝚯 𝐥𝐨𝐠𝐧 : worst case when n is not square 
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II 

•Binary Search 

• Insertion Sort 
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II.1 Binary Search: the problem of 
searching sorted lists   

•When we have many search queries, it is more efficient to
first sort the list and implement the search queries using a
searching algorithm smarter than linear search, which
takes linear time

• Given a list L[0…n-1] of integers sorted in non-decreasing
order and a number x, check if x is in L: if found return an
index i such that L[i]= x, otherwise return -1
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II.1 Idea of Binary Search 

• Same as the bisection method

• Compare x with the middle element of L 

• If >, we can ignore the lower half of L since L is sorted

• If <, we can ignore the upper half of L since L is sorted

• If =, we are done (x is an element of L)

• Repeat
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II.1 Try it on a example

Try it on: 

a. L = [-3,-2,1,1,2,3, 5, 6, 8, 9,17] and x = 5

b. Same L with and x = 4 
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.a Binary search for 5 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.a Binary search for 5 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

II.1.a Binary search for 5 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

Return the index 6 of 5
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.a Binary search for 5 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

Return the index 6 of 5 
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.a Binary search for 5 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6 7      8       9    10

Return the index 6 of 5 
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10



EECE 230C - Introduction to Computation and Programming 

[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

[]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10
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[-3,-2,1,1,2,3, 5, 6, 8, 9,17]

[5, 6, 8, 9,17]

[5, 6]

[]

II.1.b Binary search for 4 in   [-3,-2,1,1,2,3, 5, 6, 8, 9,17]

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

0         1      2    3    4     5       6      7      8       9    10

Empty search interval: return -1   



II.1 Elaborate on idea

• We need 3 variables: low, mid, and high
• Initially: low = 0 and high = n-1
• Compute:    mid = (n-1)//2                                                                       

(floor of (n-1)/2, i.e., largest integer less than or equal to (n-1)/2)
• If x==A[mid], done: return mid 
• If L[mid]<x, update low = mid +1 and keep high the same
• If L[mid]>x, update high = mid -1 and keep low  the same
• Re-compute: mid = (low+high)//2
• Repeat this  process until either x is found or low > high, in which 

case return -1
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II.1 Binary Search function   
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II.1 Binary Search  time analysis: same as 
square-root bisection    
• Initially, list size  is n
• After each iteration of the while loop, the  length of the sub-list     

L[start … end] is reduced by at least half   
• Thus after k iterations,   its length is at most 𝐧/𝟐𝐤

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 iterations, its length is at most 1
• Moreover, length is reduced by at least one at each iteration (as either 
𝐥𝐨𝐰 is set to 𝐦𝐢𝐝 + 𝟏 or 𝐡𝐢𝐠𝐡 to 𝐦𝐢𝐝 − 𝟏, if 𝐋[𝒎𝒊𝒅] ≠ 𝒙 ) 

• Hence after at most 𝐥𝐨𝐠𝟐 𝐧 + 𝟏 iterations, its must be empty
• This shows that the worst case time = 𝐎( 𝐥𝐨𝐠𝟐 𝐧 + 𝟏) = 𝐎 𝐥𝐨𝐠𝐧
• It is actually 𝚯 𝐥𝐨𝐠𝐧 : worst case when 𝑥 is not in the list  
• Best case time =  𝚯 𝟏 :  if x== 𝐋[𝒎𝒊𝒅] in the first iteration  
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II.2 Insertion Sort: the Porting Problem    

• Input: list of n numbers L = [L[0],   L[1],∙ ∙ ∙, L[n-1]]  

• Objective: permute the elements of L so that they are sorted in non-
decreasing order, i.e.,  L[0] ≤ L[1] ≤ ∙ ∙ ∙ ≤L[n-1]

• Example:
• Input: L=[8, 2, 4, 9, 3, 2, 6]

• Sorted: L=[2,  2, 3, 4, 6, 8, 9]

• In  PA 4, you implemented the Selection Sort algorithm, which takes  
Θ 𝑛2 time

• Now: Insertion Sort, which also takes Θ 𝑛2 time
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II.2 Idea of Insertion Sort 

• Idea: sorting a hand of cards

• First card: ok

• Compare second card with the 
first  and insert in its correct place 

• Compare the third card with the 
first and second card and insert it 
in its correct place

• And so on until you reach the last 
card
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Figure 2.1 in [CLRS, page 17]



II.2 Try it on an example (Continued) 

L = [5,  2,  4,   6,   1,   3] 

L = [2,  5,  4,   6,   1,   3]

L = [2, 4,  5,   6,   1,   3]

L = [2, 4,  5,   6,   1,   3]

L = [1,  2, 4,  5,   6,   3]

L = [1, 2,  3,   4,    5,  6]
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II.2 Try it on an example (Continued) 

L = [5,  2,  4,   6,   1,   3] 

L = [2,  5,  4,   6,   1,   3]

L = [2, 4,  5,   6,   1,   3]

L = [2, 4,  5,   6,   1,   3]

L = [1,  2, 4,  5,   6,   3]

L = [1, 2,  3,   4,    5,  6]
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Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key

• Shaded cell:  values compared to the key

• Shaded arrows: values moved the right

• Black arrow:  where  the key is inserted 
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II.2 Try it on an example (Continued) 
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Edited version of Figure 2.2 in [CLRS, page 18]

• Black cell: value under consideration, called key
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II.2 Insertion Sort function (Continued)
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II.2 Insertion Sort function (Continued)
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• Function modifies input list L: it has no return value   



II.2 Insertion Sort function (Continued)
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• Function modifies input list L: it has no return value   



II.2 Time Analysis Insertion Sort   

• We have two nested loops each running for at most 𝑛 steps 

• Thus the worst case time is O n2 steps 

• By more carful analysis,we will show below that it is Θ 𝑛2

• Analysis similar to element distinctness algorithm
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II.2 Time Analysis Insertion Sort 
(Continued)    

• Worst case when array in reverse 
order: inner while loop will always go 
back 𝑖 = 0 and stop at 𝑖 = −1

• Thus at the  j′th iteration of the 
outer loop, the inner loop takes 
Θ j steps. Therefore, the  j′th
iteration of the outer loop takes 
Θ j steps

• Hence total worst case running time:

Θ 𝑛 + σ𝑗=1
𝑛−1Θ(𝑗) = Θ σ𝑗=1

𝑛−1 𝑗 = Θ 𝑛2
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Θ j steps 

Θ j

Θ 1

Θ 1



II.2 Selection Sort versus Insertion Sort 
(Continued) 
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Selection Sort Insertion Sort

Worst case 
running time

Best case running
time 



II.2 Selection Sort versus Insertion Sort 
(Continued)    
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Selection Sort Insertion Sort

Worst case 
running time

Θ 𝑛2 Θ 𝑛2

Best case running
time 

Θ 𝑛2 Θ 𝑛

Number of write
operations on list 



II.2 Selection Sort versus Insertion Sort 
(Continued)
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Selection Sort Insertion Sort

Worst case 
running time

Θ 𝑛2 Θ 𝑛2

Best case running
time 

Θ 𝑛2 Θ 𝑛

Number of write
operations on list 

Θ 𝑛 Θ 𝑛2

Worst case



III. Time analysis of some list operations and 
methods  
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III.1 Time analysis of basic list operations and 
methods

Equality check: L1==L2

Concatenation: L = L1+L2

Membership test: e in L 

Slicing: L[i:j+1]

L.count(e) 

L.index(e)

L.reverse(e)
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Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of 
size Θ(1) or objects of type float, bool, or None) 



III.1 Time analysis of basic list operations and 
methods (Continued) 

Equality check: L1==L2 Θ( min(len(L1), len(L2) ) PA 3.Problem 2.b

Concatenation: L = L1+L2 Θ(len(L1)+len(L2))

Membership test: e in L Θ(len(L1)) if e is a scalar PSS 3.Prolem 1.b

Slicing: L[i:j+1] Θ(j-i)

L.count(e) Θ(len(L)) PSS 4.Problem 1.a

L.index(e) Θ(len(L)) PSS 4.Problem 1.b

L.reverse(e) Θ(len(L)) PSS 4.Problem 1.c
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Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of 
size Θ(1) or objects of type float, bool, or None) 



III.1 Time analysis of basic list operations and 
methods (Continued) 

Equality check: L1==L2 Θ( min(len(L1), len(L2) ) PA 3.Problem 3.b

Concatenation: L = L1+L2 Θ(len(L1)+len(L2))

Membership test: e in L Θ(len(L1)) if e is a scalar PSS 3.Prolem 1.b

Slicing: L[i:j+1] Θ(j-i)

L.count(e) Θ(len(L)) PSS 4.Problem 1.a

L.index(e) Θ(len(L)) PSS 4.Problem 1.b

L.reverse(e) Θ(len(L)) PSS 4.Problem 1.c
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Assume below that objects in lists are Θ(1)-size scalars (i.e., integers of 
size Θ(1) or objects of type float, bool, or None) 



III.2 List.append method 

• Recall from [Functions III.3] that in the worst case, a single 
L.append(e) operations  takes Θ(len(L)) time: if not enough 
contiguous cells are available,  the whole list is copied to new place in 
memory and resized

• But the overhead on a  long sequence of append operation is not 
substantial 

• Why? The implementation of append  in Python is something like the 
this: when append makes the list size a power of 2, the list is doubled, 
i.e.,  it is copied to new place in memory and resized to twice its size 
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III.3 List.append method: amortized analysis

• Consider the  following sequence of append operations:

• Let 𝑘 be the largest power of 2 less than  𝑛, i.e., 2𝑘 < 𝑛

• Then for i = 1,2,22, 23, … , 2k , the cost of append is Θ 2𝑖 = Θ i

• For all other values of i,the cost is Θ 1

• Thus total cost : Θ n + Θ σ𝑡=0
𝑘 2𝑡 =  𝚯 𝒏

since σ𝑡=0
𝑘 2𝑡 = 2k+1 − 1 < 2n − 1
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reduce or pay off (a debt) with regular payments [Oxford Dictionaries] 



III.3 List.append method: amortized analysis 
(Continued)  
• Compare with L=L+[e]:

• For each  i , the cost of L=L+[e] is Θ i (a new list is created)  

• Thus total cost : Θ σ𝑖=0
𝑛−1 𝑖 = Θ 𝑛2
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III.4 List.sort method

• List.sort takes  Θ 𝑛 log 𝑛 time to sort a size-n list 

• Much faster than Selection Sort and Insertion Sort, which take 
Θ 𝑛2 time each  

• Next topic is recursion

• Among other things, we will see how recursion can be used to sort in 
Θ 𝑛 log 𝑛 time  
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